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Graph programming language GP 2
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Example program: transitive closure

A graph is transitive if for every directed path v  v ′ with v 6= v ′,
there is an edge v → v ′.

Program for computing a transitive closure of the input graph
(smallest transitive extension):

Main = link!

link(a, b, x, y, z : list)

x

1

y

2

z
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a b
⇒ x
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z
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a b

where not edge(1, 3)



Example program: transitive closure (cont’d)

⇒ ⇒

⇓
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⇐ ⇐



Graph transformation is slow: example

Input: A non-empty unlabelled graph G without marks.

Output: Fail if and only if G is disconnected.

Main = init; forward!; if match then fail

init () match()
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⇒
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⇒
1

forward()

1 2

⇒
1 2
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Graph transformation is slow: example

Input: A non-empty unlabelled graph G without marks.

Output: Fail if and only if G is disconnected.

Main = init; forward!; if match then fail

init () match()

1

⇒
1 1

⇒
1

forward()

1 2

⇒
1 2

◮ Maximal number of rule applications: |V |

◮ Worst case time for matching forward: O(|V | × |E |)

◮ Worst case program runtime: O(|V |2 × |E |)



Graph transformation is slow: example

Measured runtime on square grids:
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Checking connectedness with rooted rules

Main = init; DFS!; if match then fail

DFS = forward!; try back else break

init(x:list) match(x:list)

x
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x
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⇒ x
1

forward(a,x,y:list) back(a,x,y:list)
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a a

◮ Rule init generates a unique root node in the host graph.

◮ GP2’s graph data structure includes a list of C-pointers to
access roots in constant time.
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Main = init; DFS!; if match then fail
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◮ Rule init generates a unique root node in the host graph.

◮ GP2’s graph data structure includes a list of C-pointers to
access roots in constant time.

◮ Rules forward and back can be matched in constant time in
graph classes of bounded node degree.



Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.
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Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.



Checking connectedness with rooted rules

Theorem (Correctness and complexity)

1. Given a non-empty input graph G, the program fails if and

only if G is disconnected.

2. The program terminates in time O(|V |+ |E |) on input graph

classes of bounded node degree.

Main = init; DFS!; if match then fail

DFS = forward!; try back else break

init(x:list) match(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

forward(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a



Graph classes for time measurements

Grid graphs Binary trees Linked lists

Cycle graphs Star graphs Complete graphs



Checking connectedness with rooted rules

Measured runtime on bounded-degree graphs:
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Checking connectedness with rooted rules

Measured runtime on star graphs:
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Matching attempts with the forward rule
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Matching attempts with the forward rule
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Matching attempts with the forward rule
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Improving the GP 2 graph data structure

◮ 2015: In Chris Bak’s original graph data structure, each node
contained the IDs of two inedges and two outedges. Other
incident edges were placed in a dynamic array.

◮ 2020: In Graham Campbell’s and Jack Romö’s data structure,
each node comes with two linked lists, one for all inedges and
one for all outedges.

◮ 2024: Ziad Ismaili Alaoui modified the 2020 data structure by
placing the edges incident with a node into 15 different lists,
separated by edge marks and edge directions.



Storing incident edges

Each node v comes with a two-dimensional array holding 15 linked
lists of incident edges:

in out loop

unmarked . . . . . . . . .

dashed . . . . . . . . .

red . . . . . . . . .

green . . . . . . . . .

blue . . . . . . . . .

where “. . . ” is a linked list of edges incident with v



Storing incident edges

Each node v comes with a two-dimensional array holding 15 linked
lists of incident edges:

in out loop

unmarked . . . . . . . . .

dashed . . . . . . . . .

red . . . . . . . . .

green . . . . . . . . .

blue . . . . . . . . .

where “. . . ” is a linked list of edges incident with v

◮ As a consequence, finding an edge incident with a given node

requires only constant time.



Checking connectedness in linear time

Main = init; DFS!; if match then fail

DFS = (next edge; {move, ignore})!; try back else break

init(x:list) match(x:list)
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◮ Input graphs have grey nodes; magenta is a wildcard for marks



Checking connectedness in linear time

Main = init; DFS!; if match then fail

DFS = (next edge; {move, ignore})!; try back else break
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◮ Input graphs have grey nodes; magenta is a wildcard for marks

◮ All rules except match are matched in constant time.



Checking connectedness in linear time

Theorem (Correctness and complexity)

1. Given a non-empty input graph G, the program fails if and

only if G is disconnected.

2. The program terminates in time O(|V |+ |E |).



Checking connectedness in linear time

Measured runtime:
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2-colouring

A 2-colouring is an assignment V → {blue, red} such that each
non-loop edge has end points with distinct colours.

 

Lemma
A graph is 2-colourable if and only if it does not contain an

undirected cycle of odd length ≥ 3.



2-Colouring in linear time
Main = init; DFS!; try unroot else fail

DFS = Forward!; try back else break

Forward = next edge; try {colour red,colour blue, blue red, red blue}
else (unroot; break)

init(x:list) unroot(x:list)

x
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colour blue(a,x,y:list) blue red(a,x,y:list)
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◮ Input graphs have grey nodes and are connected



2-Colouring in linear time

⇒
init

⇒
FORWARD!

⇒
DFS!

⇒
unroot

⇒
init

⇒
FORWARD!

⇒
fail

Failure



2-Colouring in linear time

Theorem (Correctness and complexity)

1. Given a non-empty and connected input graph G, the

program fails if G is not 2-colourable.

Otherwise, the program returns G with nodes coloured red

and blue such that adjacent nodes have different colours.

2. The program terminates in time O(|V |+ |E |).



2-Colouring in linear time
Measured runtime:
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Recognising binary DAGs in linear time

◮ Directed acyclic graphs where each node has at most two
outgoing edges
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◮ Our program reduces input graphs by repeatedly
◮ moving a root along edges in opposite direction to find a node

v without incoming edges, and
◮ deleting v and its ≤ 2 outedges



Recognising binary DAGs in linear time

◮ Directed acyclic graphs where each node has at most two
outgoing edges

◮ Our program reduces input graphs by repeatedly
◮ moving a root along edges in opposite direction to find a node

v without incoming edges, and
◮ deleting v and its ≤ 2 outedges

◮ The input graph is a binary DAG iff the result graph is empty



Recognising binary DAGs in linear time

Main = (init; Reduce!; if flag then break)!; if flag then fail

Reduce = up!; try Delete else (set flag; break)

init(x:list) up(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x y

1 2 1 2

a a

where outdeg(1)<3

set flag(x:list) flag(x:list)

x ⇒ x
1 1

x ⇒ x
1 1

Delete = {del1, del1 d, del21, del21 d, del22, del22 d, del0}

del1(a,x,y:list) del1 d(a,x,y:list) del0(x:list)

x y ⇒ x
1 1

a
x y ⇒ x
1 1

a
x ⇒ ∅

del21(a,b,x,y:list) del21 d(a,b,x,y:list)

x y ⇒ x
1 1

a

b x y ⇒ x
1 1

a

b

del22(a,b,x,y,z:list) del22 d(a,b,x,y,z:list)
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z ⇒
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y
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z ⇒
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Recognising binary DAGs in linear time

⇒ Failure



Recognising binary DAGs in linear time

Theorem (Correctness and complexity)

1. Given an input graph G, the program fails if and only if G is

not a binary DAG.

2. The program terminates in time O(|V |+ |E |).



Recognising binary DAGs in linear time

Measured runtime:
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Overview: Fast GP 2 programs

Destructive Non-destructive

Binary DAG recognition Checking connectedness
(linear time)

Tree recognition 2-Colouring
(linear-time on connected graphs)

Cycle graph recognition Topological sorting
(linear-time on bounded-degree classes)

(all linear time) Minimum spanning tree generation
(O(m log n) on bounded-degree classes)



Conclusion

◮ Rule-based graph programs allow for simple formal reasoning
about correctness and complexity — compared with
imperative programs.

◮ Programmers don’t have access to the graph data structure: a
reasonable price to pay for simple formal reasoning.

◮ Rule matching in constant time is crucial for achieving fast
runtimes.

◮ Our case studies match the best known time bounds of
imperative algorithms — sometimes under mild conditions.

◮ For programs such as 2-colouring, we need not assume
connected input graphs if nodes are separated by marks too
(work in progress).

◮ We speculate that all DFS-based graph algorithms can be
implemented to run in linear time without extra conditions.
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