
Speeding up Graph Transformation

Detlef Plump

University of York, UK

In cooperation with Ziad Ismaili Alaoui, Chris Bak, Graham
Campbell, Brian Courtehoute, Mike Dodds and Jack Romö

Graph programming language GP 2

input graph output graph(s)

GP 2 program

◮ Based on attributed graph-transformation rules

◮ Formal operational semantics (non-deterministic)

◮ Computationally complete

Graph programming language GP 2

Compiler to C
input graph output graph

GP2 program

◮ Based on attributed graph-transformation rules

◮ Formal operational semantics (non-deterministic)

◮ Computationally complete

GP2-to-C Compiler

GP2 Program

GP2-to-C
C

Program
GCC

Binary

Input Graph

Execute
Output

Graph

Example program: transitive closure

A graph is transitive if for every directed path v v ′ with v 6= v ′,
there is an edge v → v ′.

Program for computing a transitive closure of the input graph
(smallest transitive extension):

Main = link!

link(a, b, x, y, z : list)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a b

where not edge(1, 3)

Example program: transitive closure (cont’d)

⇒ ⇒

⇓

4
⇐ ⇐

Graph transformation is slow: example

Input: A non-empty unlabelled graph G without marks.

Output: Fail if and only if G is disconnected.

Main = init; forward!; if match then fail

init () match()

1

⇒
1 1

⇒
1

forward()

1 2

⇒
1 2

Graph transformation is slow: example

Input: A non-empty unlabelled graph G without marks.

Output: Fail if and only if G is disconnected.

Main = init; forward!; if match then fail

init () match()

1

⇒
1 1

⇒
1

forward()

1 2

⇒
1 2

◮ Maximal number of rule applications: |V |

Graph transformation is slow: example

Input: A non-empty unlabelled graph G without marks.

Output: Fail if and only if G is disconnected.

Main = init; forward!; if match then fail

init () match()

1

⇒
1 1

⇒
1

forward()

1 2

⇒
1 2

◮ Maximal number of rule applications: |V |

◮ Worst case time for matching forward: O(|V | × |E |)

Graph transformation is slow: example

Input: A non-empty unlabelled graph G without marks.

Output: Fail if and only if G is disconnected.

Main = init; forward!; if match then fail

init () match()

1

⇒
1 1

⇒
1

forward()

1 2

⇒
1 2

◮ Maximal number of rule applications: |V |

◮ Worst case time for matching forward: O(|V | × |E |)

◮ Worst case program runtime: O(|V |2 × |E |)

Graph transformation is slow: example

Measured runtime on square grids:

0.5 1 1.5 2 2.5 3

·104

0

500

1,000

1,500

2,000

Size of input graph

R
u
n
ti
m
e
(m

s)

Grid graphs

Checking connectedness with rooted rules

Main = init; DFS!; if match then fail

DFS = forward!; try back else break

init(x:list) match(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

forward(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

◮ Rule init generates a unique root node in the host graph.

◮ GP2’s graph data structure includes a list of C-pointers to
access roots in constant time.

Checking connectedness with rooted rules

Main = init; DFS!; if match then fail

DFS = forward!; try back else break

init(x:list) match(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

forward(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

◮ Rule init generates a unique root node in the host graph.

◮ GP2’s graph data structure includes a list of C-pointers to
access roots in constant time.

◮ Rules forward and back can be matched in constant time in
graph classes of bounded node degree.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

◮ The program implements a depth-first search to find all nodes
connected to the root.

Checking connectedness with rooted rules

Theorem (Correctness and complexity)

1. Given a non-empty input graph G, the program fails if and

only if G is disconnected.

2. The program terminates in time O(|V |+ |E |) on input graph

classes of bounded node degree.

Main = init; DFS!; if match then fail

DFS = forward!; try back else break

init(x:list) match(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

forward(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

Graph classes for time measurements

Grid graphs Binary trees Linked lists

Cycle graphs Star graphs Complete graphs

Checking connectedness with rooted rules

Measured runtime on bounded-degree graphs:

0 0.2 0.4 0.6 0.8 1

·106

0

20

40

60

80

100

120

Size of input graph

R
u
n
ti
m
e
(m

s)

Grid graphs
Binary trees
Linked lists
Cycle graphs

Checking connectedness with rooted rules

Measured runtime on star graphs:

1 2 3 4 5 6 7 8

·104

0

500

1,000

1,500

Size of input graph

R
u
n
ti
m
e
(m

s)

Star graphs
List graphs

Matching attempts with the forward rule

⇒
fd

⇒
fd

⇒
bk

1 1-2 1 1-3

⇓fd

⇐
bk

⇐
fd

⇐
bk

1-5 1 1-4 1

⇓6
{fd,bk}

⇒
fd

⇒
bk

⇒
bk

1-8 1 8 1

Matching attempts with the forward rule

⇒
fd

⇒
fd

⇒
bk

1 1-2 1 1-3

⇓fd

⇐
bk

⇐
fd

⇐
bk

1-5 1 1-4 1

⇓6
{fd,bk}

⇒
fd

⇒
bk

⇒
bk

1-8 1 8 1

Worst case: 2|E |+
∑|E |

i=1 i = O(|E |2)

Matching attempts with the forward rule

⇒
fd

⇒
fd

⇒
bk

1 1.1 1 1.3

⇓fd

⇐
bk

⇐
fd

⇐
bk

1.8 1 1.5 1

⇓6
{fd,bk}

⇒
fd

⇒
bk

⇒
bk

4.5 1 8 1

Expected numbers

Improving the GP 2 graph data structure

◮ 2015: In Chris Bak’s original graph data structure, each node
contained the IDs of two inedges and two outedges. Other
incident edges were placed in a dynamic array.

◮ 2020: In Graham Campbell’s and Jack Romö’s data structure,
each node comes with two linked lists, one for all inedges and
one for all outedges.

◮ 2024: Ziad Ismaili Alaoui modified the 2020 data structure by
placing the edges incident with a node into 15 different lists,
separated by edge marks and edge directions.

Storing incident edges

Each node v comes with a two-dimensional array holding 15 linked
lists of incident edges:

in out loop

unmarked

dashed

red

green

blue

where “. . . ” is a linked list of edges incident with v

Storing incident edges

Each node v comes with a two-dimensional array holding 15 linked
lists of incident edges:

in out loop

unmarked

dashed

red

green

blue

where “. . . ” is a linked list of edges incident with v

◮ As a consequence, finding an edge incident with a given node

requires only constant time.

Checking connectedness in linear time

Main = init; DFS!; if match then fail

DFS = (next edge; {move, ignore})!; try back else break

init(x:list) match(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

next edge(a,x,y:list) ignore(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

move(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

◮ Input graphs have grey nodes; magenta is a wildcard for marks

Checking connectedness in linear time

Main = init; DFS!; if match then fail

DFS = (next edge; {move, ignore})!; try back else break

init(x:list) match(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

next edge(a,x,y:list) ignore(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

move(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

◮ Input graphs have grey nodes; magenta is a wildcard for marks

◮ All rules except match are matched in constant time.

Checking connectedness in linear time

Theorem (Correctness and complexity)

1. Given a non-empty input graph G, the program fails if and

only if G is disconnected.

2. The program terminates in time O(|V |+ |E |).

Checking connectedness in linear time

Measured runtime:

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

Size of input graph

R
u
n
ti
m
e
(m

s)

Grid graphs
Binary trees
Linked lists
Cycle graphs
Star graphs

Complete graphs

2-colouring

A 2-colouring is an assignment V → {blue, red} such that each
non-loop edge has end points with distinct colours.

Lemma
A graph is 2-colourable if and only if it does not contain an

undirected cycle of odd length ≥ 3.

2-Colouring in linear time
Main = init; DFS!; try unroot else fail

DFS = Forward!; try back else break

Forward = next edge; try {colour red,colour blue, blue red, red blue}
else (unroot; break)

init(x:list) unroot(x:list)

x
1

⇒ x
1

x
1

⇒ x
1

next edge(a,x,y:list) colour red(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

colour blue(a,x,y:list) blue red(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

red blue(a,x,y:list) back(a,x,y:list)

x
1

y

2

⇒ x
1

y

2

a a
x
1

y

2

⇒ x
1

y

2

a a

◮ Input graphs have grey nodes and are connected

2-Colouring in linear time

⇒
init

⇒
FORWARD!

⇒
DFS!

⇒
unroot

⇒
init

⇒
FORWARD!

⇒
fail

Failure

2-Colouring in linear time

Theorem (Correctness and complexity)

1. Given a non-empty and connected input graph G, the

program fails if G is not 2-colourable.

Otherwise, the program returns G with nodes coloured red

and blue such that adjacent nodes have different colours.

2. The program terminates in time O(|V |+ |E |).

2-Colouring in linear time
Measured runtime:

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

Size of input graph

R
u
n
ti
m
e
(m

s)

Grid graphs
Binary trees
List graphs
Cycle graphs
Star graphs

Complete graphs

Recognising binary DAGs in linear time

◮ Directed acyclic graphs where each node has at most two
outgoing edges

Recognising binary DAGs in linear time

◮ Directed acyclic graphs where each node has at most two
outgoing edges

◮ Our program reduces input graphs by repeatedly
◮ moving a root along edges in opposite direction to find a node

v without incoming edges, and
◮ deleting v and its ≤ 2 outedges

Recognising binary DAGs in linear time

◮ Directed acyclic graphs where each node has at most two
outgoing edges

◮ Our program reduces input graphs by repeatedly
◮ moving a root along edges in opposite direction to find a node

v without incoming edges, and
◮ deleting v and its ≤ 2 outedges

◮ The input graph is a binary DAG iff the result graph is empty

Recognising binary DAGs in linear time

Main = (init; Reduce!; if flag then break)!; if flag then fail

Reduce = up!; try Delete else (set flag; break)

init(x:list) up(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x y

1 2 1 2

a a

where outdeg(1)<3

set flag(x:list) flag(x:list)

x ⇒ x
1 1

x ⇒ x
1 1

Delete = {del1, del1 d, del21, del21 d, del22, del22 d, del0}

del1(a,x,y:list) del1 d(a,x,y:list) del0(x:list)

x y ⇒ x
1 1

a
x y ⇒ x
1 1

a
x ⇒ ∅

del21(a,b,x,y:list) del21 d(a,b,x,y:list)

x y ⇒ x
1 1

a

b x y ⇒ x
1 1

a

b

del22(a,b,x,y,z:list) del22 d(a,b,x,y,z:list)

x

y

z ⇒

x

y

1

2

1

2

a

b

x

y

z ⇒

x

y

1

2

1

2

a

b

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

Recognising binary DAGs in linear time

⇒ Failure

Recognising binary DAGs in linear time

Theorem (Correctness and complexity)

1. Given an input graph G, the program fails if and only if G is

not a binary DAG.

2. The program terminates in time O(|V |+ |E |).

Recognising binary DAGs in linear time

Measured runtime:

0 0.2 0.4 0.6 0.8 1

·106

0

50

100

Size of input graph

R
u
n
ti
m
e
(m

s)

Grid graphs
Binary trees
List graphs
Cycle graphs
Star graphs

Complete graphs

Overview: Fast GP 2 programs

Destructive Non-destructive

Binary DAG recognition Checking connectedness
(linear time)

Tree recognition 2-Colouring
(linear-time on connected graphs)

Cycle graph recognition Topological sorting
(linear-time on bounded-degree classes)

(all linear time) Minimum spanning tree generation
(O(m log n) on bounded-degree classes)

Conclusion

◮ Rule-based graph programs allow for simple formal reasoning
about correctness and complexity — compared with
imperative programs.

◮ Programmers don’t have access to the graph data structure: a
reasonable price to pay for simple formal reasoning.

◮ Rule matching in constant time is crucial for achieving fast
runtimes.

◮ Our case studies match the best known time bounds of
imperative algorithms — sometimes under mild conditions.

◮ For programs such as 2-colouring, we need not assume
connected input graphs if nodes are separated by marks too
(work in progress).

◮ We speculate that all DFS-based graph algorithms can be
implemented to run in linear time without extra conditions.

	Introduction
	GP2
	Example Program
	Slow Graph Transformation

	Connectedness
	Program
	Execution
	Theorem
	Graph Classes
	Timings
	Matching attempts with forward

	Improving the graph data structure
	Connectedness in linear time
	Program
	Execution
	Theorem
	Timings

	2-Colouring in linear time
	Definition
	Program
	Execution
	Theorem
	Timings

	Binary DAGs
	Idea
	Program
	Execution
	Theorem
	Timings

	Overview
	Conclusion

