Speeding up Graph Transformation

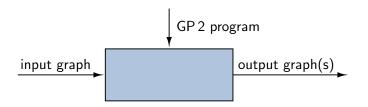
Detlef Plump

University of York, UK

In cooperation with Ziad Ismaili Alaoui, Chris Bak, Graham Campbell, Brian Courtehoute, Mike Dodds and Jack Romö

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

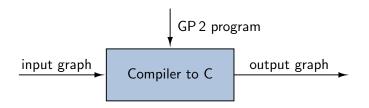
Graph programming language GP 2



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

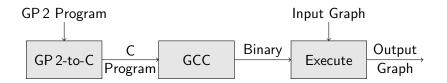
- Based on attributed graph-transformation rules
- Formal operational semantics (non-deterministic)
- Computationally complete

Graph programming language GP 2



- Based on attributed graph-transformation rules
- Formal operational semantics (non-deterministic)
- Computationally complete

GP 2-to-C Compiler



ヘロト 人間 と 人間 と 人間 とう

Ξ.

Example program: transitive closure

A graph is *transitive* if for every directed path $v \rightsquigarrow v'$ with $v \neq v'$, there is an edge $v \rightarrow v'$.

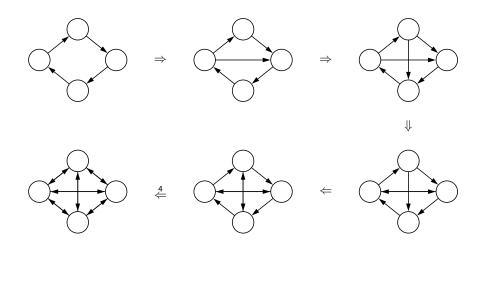
Program for computing a *transitive closure* of the input graph (smallest transitive extension):

Main = link! link(a,b,x,y,z:list) $(x)_{1} \xrightarrow{a} (y)_{2} \xrightarrow{b} (z)_{3} \Rightarrow (x)_{1} \xrightarrow{a} (y)_{2} \xrightarrow{b} (z)_{3}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

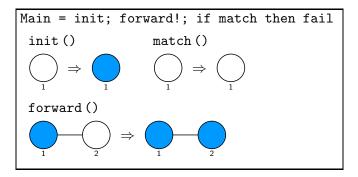
where not edge(1,3)

Example program: transitive closure (cont'd)

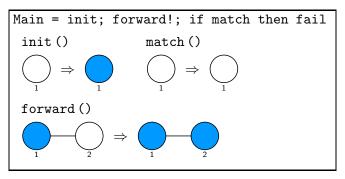


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Input: A non-empty unlabelled graph G without marks. Output: Fail if and only if G is disconnected.



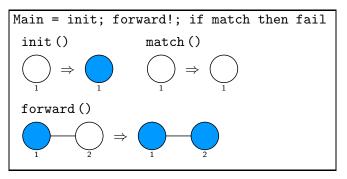
Input: A non-empty unlabelled graph G without marks. Output: Fail if and only if G is disconnected.



Maximal number of rule applications: |V|

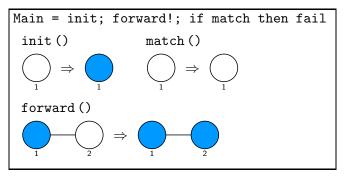
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Input: A non-empty unlabelled graph G without marks. Output: Fail if and only if G is disconnected.



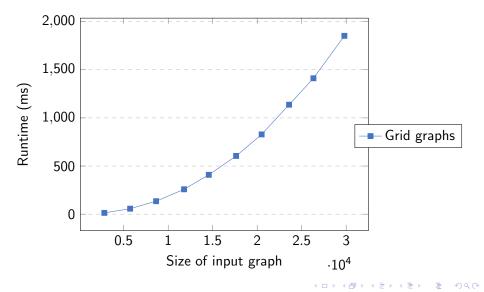
- Maximal number of rule applications: |V|
- Worst case time for matching forward: $\mathcal{O}(|V| \times |E|)$

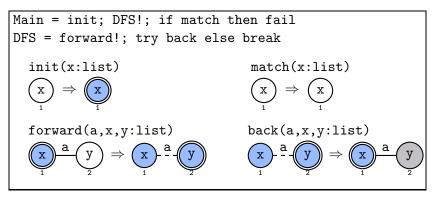
Input: A non-empty unlabelled graph G without marks. Output: Fail if and only if G is disconnected.



- Maximal number of rule applications: |V|
- Worst case time for matching forward: $\mathcal{O}(|V| \times |E|)$
- Worst case program runtime: $\mathcal{O}(|V|^2 \times |E|)$

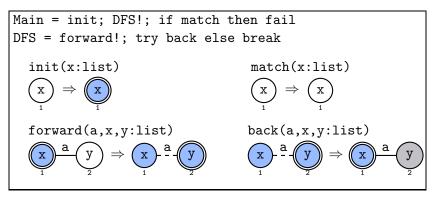
Measured runtime on square grids:



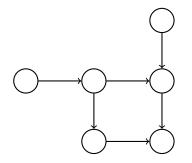


Rule init generates a unique root node in the host graph.

 GP 2's graph data structure includes a list of C-pointers to access roots in constant time.

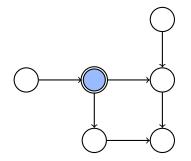


- Rule init generates a unique root node in the host graph.
- GP 2's graph data structure includes a list of C-pointers to access roots in constant time.
- Rules forward and back can be matched in constant time in graph classes of bounded node degree.

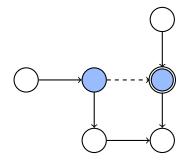


The program implements a *depth-first search* to find all nodes connected to the root.

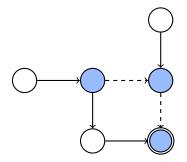
▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで



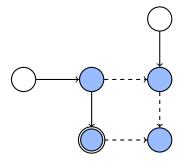
The program implements a *depth-first search* to find all nodes connected to the root.



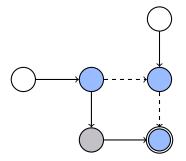
The program implements a *depth-first search* to find all nodes connected to the root.



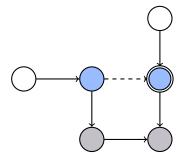
The program implements a *depth-first search* to find all nodes connected to the root.



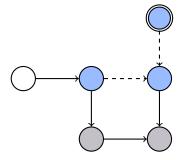
The program implements a *depth-first search* to find all nodes connected to the root.



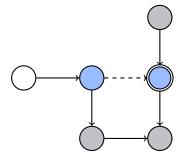
The program implements a *depth-first search* to find all nodes connected to the root.



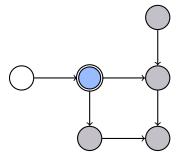
The program implements a *depth-first search* to find all nodes connected to the root.



The program implements a *depth-first search* to find all nodes connected to the root.

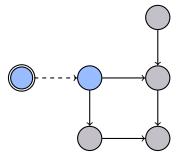


The program implements a *depth-first search* to find all nodes connected to the root.

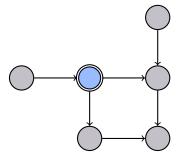


The program implements a *depth-first search* to find all nodes connected to the root.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで



The program implements a *depth-first search* to find all nodes connected to the root.

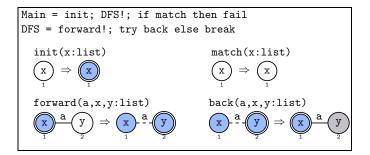


The program implements a *depth-first search* to find all nodes connected to the root.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

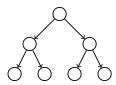
Theorem (Correctness and complexity)

- 1. Given a non-empty input graph G, the program fails if and only if G is disconnected.
- 2. The program terminates in time O(|V| + |E|) on input graph classes of bounded node degree.

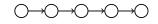


Graph classes for time measurements

Grid graphs



Binary trees



Linked lists

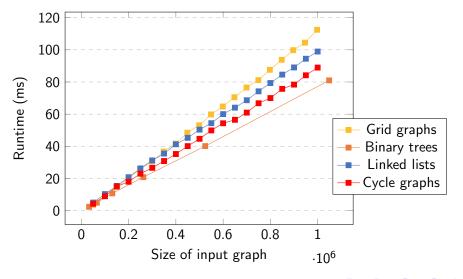
Cycle graphs

Star graphs

Complete graphs

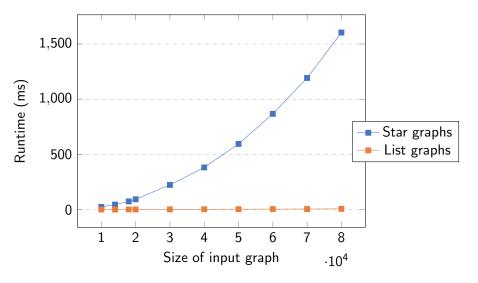
・ロト・日本・日本・日本・日本・日本

Measured runtime on bounded-degree graphs:



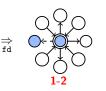
◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 国 ▶ ◆ 回 ▶ ◆ 回 ▶

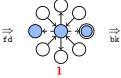
Measured runtime on star graphs:



▲ロ > ▲ 母 > ▲ 母 > ▲ 母 > ▲ 母 > ◇ ◇ ◇

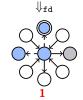
Matching attempts with the forward rule





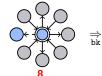
∉ fd

 \Rightarrow bk

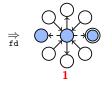


 ⇔ bk

 $\stackrel{\Rightarrow}{\underset{\texttt{fd}}{\Rightarrow}}$

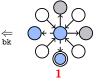


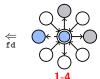
Matching attempts with the forward rule

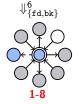


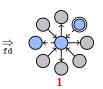
 $\Rightarrow \\ bk$

⇐ bk





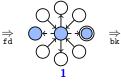




 $\stackrel{\Rightarrow}{\Rightarrow}$

Worst case: $2|E| + \sum_{i=1}^{|E|} i = O(|E|^2)$

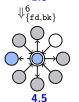
Matching attempts with the forward rule

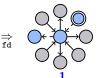


∜fd

 ⇔ bk

⇒ bk





 \Rightarrow $\overset{\bigcirc}{\overset{\frown}_{bk}}$

⇐ fd

Expected numbers

Improving the GP2 graph data structure

- 2015: In Chris Bak's original graph data structure, each node contained the IDs of two inedges and two outedges. Other incident edges were placed in a dynamic array.
- 2020: In Graham Campbell's and Jack Romö's data structure, each node comes with two linked lists, one for all inedges and one for all outedges.
- 2024: Ziad Ismaili Alaoui modified the 2020 data structure by placing the edges incident with a node into 15 different lists, separated by edge marks and edge directions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Storing incident edges

Each node v comes with a two-dimensional array holding 15 linked lists of incident edges:

	in	out	loop
unmarked			
dashed			
red			
green			
blue			

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

where "..." is a linked list of edges incident with v

Storing incident edges

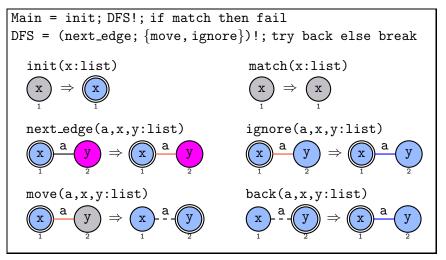
Each node v comes with a two-dimensional array holding 15 linked lists of incident edges:

	in	out	loop
unmarked			
dashed			
red			
green			
blue			

where "..." is a linked list of edges incident with v

As a consequence, finding an edge incident with a given node requires only constant time.

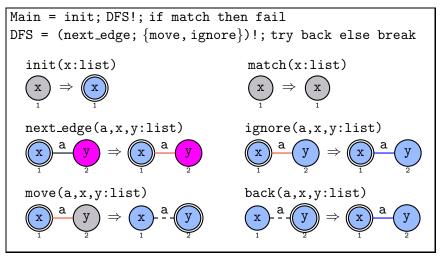
Checking connectedness in linear time



Input graphs have grey nodes; magenta is a wildcard for marks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Checking connectedness in linear time



Input graphs have grey nodes; magenta is a wildcard for marks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

All rules except match are matched in constant time.

Checking connectedness in linear time

Theorem (Correctness and complexity)

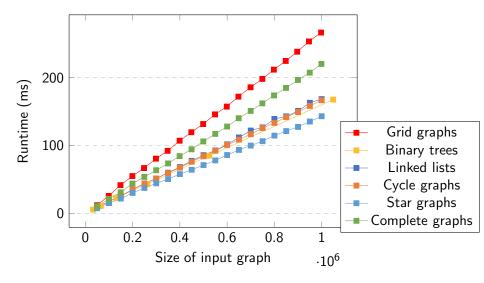
1. Given a non-empty input graph G, the program fails if and only if G is disconnected.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

2. The program terminates in time $\mathcal{O}(|V| + |E|)$.

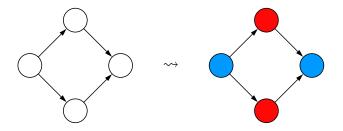
Checking connectedness in linear time

Measured runtime:



2-colouring

A 2-colouring is an assignment $V \rightarrow \{\text{blue, red}\}\$ such that each non-loop edge has end points with distinct colours.

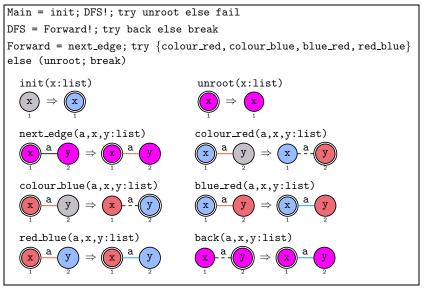


Lemma

A graph is 2-colourable if and only if it does not contain an undirected cycle of odd length \geq 3.

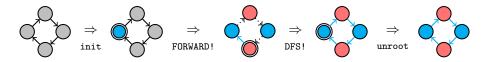
(日)

2-Colouring in linear time



Input graphs have grey nodes and are connected

2-Colouring in linear time



イロト イポト イヨト

E 990

Theorem (Correctness and complexity)

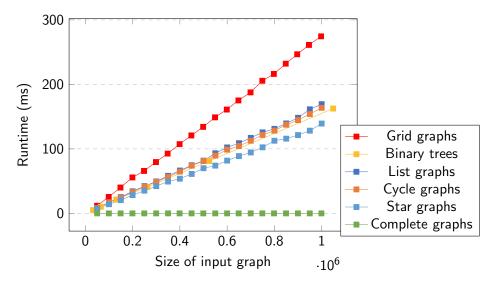
 Given a non-empty and connected input graph G, the program fails if G is not 2-colourable. Otherwise, the program returns G with nodes coloured red and blue such that adjacent nodes have different colours.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2. The program terminates in time $\mathcal{O}(|V| + |E|)$.

2-Colouring in linear time

Measured runtime:



◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣・のへぐ

 Directed acyclic graphs where each node has at most two outgoing edges

- Directed acyclic graphs where each node has at most two outgoing edges
- Our program reduces input graphs by repeatedly
 - moving a root along edges in opposite direction to find a node v without incoming edges, and

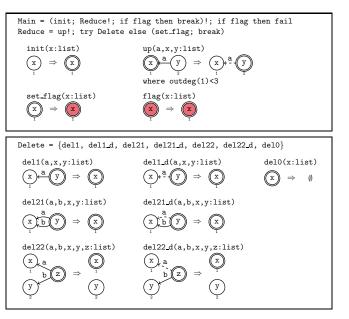
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

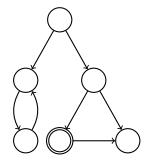
• deleting \mathbf{v} and its ≤ 2 outedges

- Directed acyclic graphs where each node has at most two outgoing edges
- Our program reduces input graphs by repeatedly
 - moving a root along edges in opposite direction to find a node v without incoming edges, and

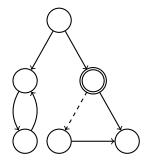
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

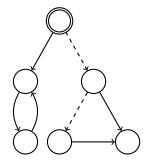
- deleting v and its ≤ 2 outedges
- The input graph is a binary DAG iff the result graph is empty



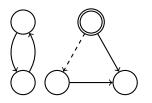


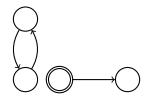
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●



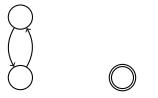


▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

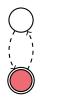




◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●



◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●



 \Rightarrow

Failure

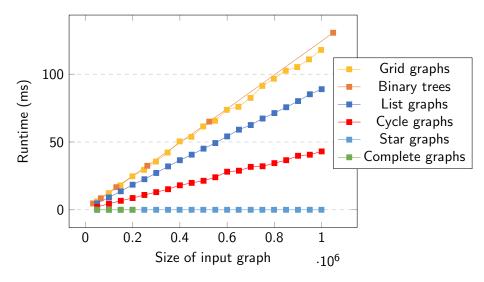
Theorem (Correctness and complexity)

1. Given an input graph G, the program fails if and only if G is not a binary DAG.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

2. The program terminates in time $\mathcal{O}(|V| + |E|)$.

Measured runtime:



・ロト・御 ト・言 ト・言 うえぐ

Overview: Fast GP 2 programs

Destructive	Non-destructive
Binary DAG recognition	Checking connectedness (linear time)
Tree recognition	2-Colouring (linear-time on connected graphs)
Cycle graph recognition	Topological sorting (linear-time on bounded-degree classes)
(all linear time)	Minimum spanning tree generation $(\mathcal{O}(m \log n) \text{ on bounded-degree classes})$

Conclusion

- Rule-based graph programs allow for simple formal reasoning about correctness and complexity — compared with imperative programs.
- Programmers don't have access to the graph data structure: a reasonable price to pay for simple formal reasoning.
- Rule matching in constant time is crucial for achieving fast runtimes.
- Our case studies match the best known time bounds of imperative algorithms — sometimes under mild conditions.
- For programs such as 2-colouring, we need not assume connected input graphs if nodes are separated by marks too (work in progress).
- We speculate that all DFS-based graph algorithms can be implemented to run in linear time without extra conditions.