Western Norway
University of
Applied Sciences

Formalization and analysis of BPMN using graph
transformation systems

Tim Krauter
Harald Konig, Adrian Rutle, and Yngve Lamo

Agenda

Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Introduction

Business Process Modeling Notation (BPMN) is a widely used standard notation to define
Intra- and inter-organizational workflows.

BPMN only has an informal description of its execution semantics [6].

Without a formalization it is difficult to check behavioral properties.

We propose a formalization based on graph rewriting
to allow checking of behavioral properties.

Graph
transformation
BP\N file system State space

{5@ ‘ enerate a (f@

Read a BPMN graph Generate a
transformation state space and

BPMN checking approach

process model. system for the model check.
process model.
n bl n b| I \
Temporal Atomic Model-checking
properties propositions results

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Agenda
Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Preliminaries: BPMN structure

Collaboration *o;essageFlow WrglnteractionNode
name: String mFIowt name: String Tge;t
by i{m*¢participants g ol 3
_/Fl’rocess «| FlowNode 1(—0& SequenceFlow
i name: String fNode)s name: String 1(—;]) name: String :
: A :

i Activity %j/:ateway ?Event

BPMN example BPMN metamodel [6]

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Preliminaries: BPMN semantics

i | E " : |
D—D@—h i - b
- J:L
= |
| i
=] :
et !
1
|
|

%

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

https://bpmn-io.github.io/bpmn-js-token-simulation/modeler.html?e=1

Preliminaries: Theoretical background

Each state/token distribution is represented as a typed attributed graph.

: subprocesses ol 1 :
: - ' 1
I@—;‘ <<enumeration>> |: : 1:ProcessSnapshot state| 1:ProcessState |! :
rocessSnapshot 1 ProcessState 1 > : 1
: : otat ot name="P1" [Running] I !
: name: String Sta®| Running, ' : I startToActivityA :
| Terminated 1 : ActivityA e |,
« ytokens (' tokens 1:Token i ;
> 1
Token * Message ' elementID="start" |! :
' 1
elementID: String ["cMessages| elementlD: String [} | 4 : :
L | e e e e o o o o e e e e o o mm e mm o o mm mm e e e o e e e e =
BPMN execution type graph Abstract syntax Concrete syntax

We are using the single-pushout (SPQO) approach with negative application conditions and
quantified nested rules [3,7,8].

So far, SPO works well to formalize the BPMN execution semantics.

Dangling edge removal by SPO is not a problem.

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

BPMN semantics formalization: Overview

Graph
transformation
BPMN file system State space

<

[S]

(3] .

o = :

§ % @ enerate a

g Read a BPMN graph Generate a

i~ process model transformation state space and

S ' system for the model check.

C start process model.

z - -

I h| n I>| I \

Temporal Atomic Model-checking
properties propositions results

Model transformation from BPMN to graph transformation systems.

Start graph

GT-Rules

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

BPMN semantics formalization: Start graph generation

Generate a process snapshot for each process in the BPMN model.

For each start event we add a token to the respective process snapshot.

1:ProcessSnapshot state 1:ProcessState ®
name="p1" - [Running]
o a
1 ¢ tokens 1:Token
p1_:star

.
>

elementID="p1_start"

1:ProcessSnapshot state 1:ProcessState ®
name="p2" - [Running]
N
o
tokens 1:Token
p2_start

Y

elementID="p2_start"

Abstract syntax Concrete syntax
Start graph

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter 10

BPMN model

BPMN semantics formalization: GT-Rule syntax

Rule conforming to the type graph

1

'| 1:ProcessSnapshot state| 1:ProcessState |
: name="P1" [Running] :
: :
: tokens 1:Token :
1 1
v elementlD="start" !
1 1

startToActivityA

ActivityA nen

1:ProcessSnapshot

state 1:ProcessState

name="P1"

tokens

[Running]

2:Token

element|D="startToActivityA"

ActivityA nen

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

11

BPMN semantics formalization: GT-Rule generation |

Each BPMN FlowNode is transformed to one or more GT-Rules.

1

! Gateways
M = Message |

1

1

1
) Parallel Inclusi !
; % S = Signal aralle nclusive

| I !
] | Start EventS (SE) = |ntermedim Gateway Gateway :
1

! C = Catch
Gn NSE MSE SSE | L =Link ! Exclusive @ Event based !
\ ;. T=Throw I 1
1

WeYe———— ..] Gateway Gateway

L e B e e A 1

¥ Intermediate Events (IE) L LT ey |
! 1 g

1 o Activities 1

% ITE MICE MITE 1 oo . "

. ! : ' Tasks ‘: :
: | 1

| I 1 i 1
- LICE LITE SICE SITE!] = =

: Activity Receive Send © RT :

P Task (RT) Task N I

] ¥ 1 (instantiating))]

.:' Boundary Events (BE) T .

I 7N n! Sub Process, expanded Event Sub Process !

! :© IBE MBE ”IZI,) MBE (non-interrupting) 11! - ©Xp 1

1, NP> ! P, il

1 0! | i

3 o F®O

r, SBE /’ \) SBE (non-interrupting) ' . i

s e ! ® !

e b L |

[e e e e N N) "

. End Events (EE) T i

g : NEE TEE MEE SEE |, : Edges :

A » - Sequence flow Message flow :

i N T O---o >

JNptolintrbobolnte oty dofedo el et ol ety doliely ol ol ooyl el dolety ool S

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

BPMN semantics formalization: GT-Rule generation Il

BPMN-FlowNode

Generated Rules

1] o

| []=H T
. G O :>0
e [[—0] To0|=T 0

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

13

BPMN semantics formalization: GT-Rule generation Il

BPMN-FlowNode Generated Rules

Parallel

Gateway

Exclusive

Gateway @

19
v,
£ 4]

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

15

Model checking BPMN |

BPMN-specific properties [2]

Safeness [2] At most one token occurs along the same sequence flow.

Option to complete [2] Any running process instance must eventually complete.

No dead activities [2] Any activity can be executed in at least one process instance.

It is possible to check all properties using our approach!

Safeness
Check specific LTL properties on the GTS state space.
Option to complete

No dead activities Check activity executions in the GTS state space.

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

https://github.com/timKraeuter/TERMGRAPH-2022#safeness
https://github.com/timKraeuter/TERMGRAPH-2022#option-to-complete
https://github.com/timKraeuter/TERMGRAPH-2022#safeness
https://github.com/timKraeuter/TERMGRAPH-2022#safeness
https://github.com/timKraeuter/TERMGRAPH-2022#safeness
https://github.com/timKraeuter/TERMGRAPH-2022#safeness
https://github.com/timKraeuter/TERMGRAPH-2022#option-to-complete
https://github.com/timKraeuter/TERMGRAPH-2022#safeness

Model checking BPMN I

Custom properties

Domain-specific requirements can be encoded using custom properties.

1. Define atomic propositions.

Use the introduced concrete BPMN syntax.

2. Write a temporal property (for example LTL).

3. Check property on the GTS state space.

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter 17

>
Q
(D
-
o
Q

Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

18

Implementation & Demonstration |

Web-based tool implementation started.

BPMN Analyzer _

Upload, download and edit BPMN models.
W
b #

Generate GTS’s from BPMN models.

o <> start end
L GTS’s executable in Groove.
1 8
I 0 BPMN.i0

Groove implements SPO with NAC’s and

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter 19

https://bpmn-analyzer.herokuapp.com/
https://groove.ewi.utwente.nl/about

Implementation & Demonstration |l

Model-checking/Verification implementation ongoing.

Verification BPMN-specific properties

_ _ _ Safeness Option to No dead
BPMN-specific properties LTL properties complete i .

Select one or more of the following properties to check for the BPMN model.

LTL properties

Safeness Optionto complete =~ No dead activities

7 Check selected properties

Atomic propositions editor planned.

Dependent on the groove model checker.

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter 20

https://github.com/timKraeuter/TERMGRAPH-2022
https://github.com/timKraeuter/TERMGRAPH-2022#safeness
https://github.com/timKraeuter/TERMGRAPH-2022#option-to-complete
https://bpmn-analyzer.herokuapp.com/
https://sourceforge.net/p/groove/bugs/499/

Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

21

Table 1: Constructs supported by different BPMN formalizations (overview based on [10]).

R e I at e d W O r k Feature Van Gorp Corradini Houhou This
et al. etal. [1] etal paper
Instantiation and termination

Start event instantiation X X X X
Exclusive event-based gateway instantiation X X

CO m panSO n Of Su p po rted B P M N featu res Parallel event-based gateway instantiation

Receive task instantiation X

Normal process completion X X X X
Activities
Activity X X X X
Subprocess X X X X
Ad-hoc subprocesses
Loop activity X
Multiple instance activity
Gateways
Parallel gateway
Exclusive gateway
Inclusive gateway (split)
Inclusive gateway (merge)
. Event-based gateway X!
We uniquely support some features. Comples gaioway
Events
None Events
Message events
Timer Events
Escalation Events
Error Events (catch)
Error Events (throw)
Cancel Events
Compensation Events
Conditional Events
Link Events
Signal Events
Multiple Events
Terminate Events X X X

Pl
oA A
Pl e
o R

PR >
b
ok
Pl

bl

Support for more event types is planned.

X
Boundary Events X2 X3 X
I Event subprocess X

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

Introduction

Preliminaries

BPMN semantics formalization

Model checking BPMN

Implementation & Demonstration

Related work

Conclusion & Future work

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

23

Conclusion

Model transformation from BPMN to graph transformation systems.

BPMN Formalization is comprehensive.

Model checking is supported.

Prototype implementation in a web-based tool.

Future work

Extend the formalization to support more BPMN features.

Evaluate our approach extensively.

Extend the implementation to include more model checking capabilities.

TERMGRAPH2022 - Formalization and analysis of BPMN using graph transformation systems — Tim Krauter

24

