Transformation of DPO Grammars into Hypergraph Lambek Grammars With The Conjunctive Kleene Star

> Tikhon Pshenitsyn ptihon@yandex.ru

Department of Mathematical Logic and Theory of Algorithms Faculty of Mathematics and Mechanics Lomonosov Moscow State University Russia

TERMGRAPH 2022

Tikhon Pshenitsyn (MSU)

TERMGRAPH 2022 1 / 23

• Rule-based approaches: productions of the form $\alpha \to \beta$ where $\alpha, \ \beta$ are strings.

- Rule-based approaches: productions of the form $\alpha \to \beta$ where α , β are strings.
- Another approach is categorial grammars.

- Rule-based approaches: productions of the form $\alpha \to \beta$ where $\alpha, \ \beta$ are strings.
- Another approach is categorial grammars.
- One assigns categories (=types) to symbols of an alphabet.

- Rule-based approaches: productions of the form $\alpha \to \beta$ where $\alpha, \ \beta$ are strings.
- Another approach is categorial grammars.
- One assigns categories (=types) to symbols of an alphabet.
- A general mechanism deals with sequences of categories.

- Rule-based approaches: productions of the form $\alpha \to \beta$ where α, β are strings.
- Another approach is categorial grammars.
- One assigns categories (=types) to symbols of an alphabet.
- A general mechanism deals with sequences of categories.
- A string is correct if one can replace each its symbol by a corresponding category and obtain a sequence of categories, which is accepted by a general mechanism.

• Lambek 1958: a logical formalism designed to model natural languages = a general mechanism.

- Lambek 1958: a logical formalism designed to model natural languages = a general mechanism.
- Types in the Lambek calculus:

- Lambek 1958: a logical formalism designed to model natural languages = a general mechanism.
- Types in the Lambek calculus:
 - Primitive (atomic) types Pr (denoted as p, q, r, np etc.)

- Lambek 1958: a logical formalism designed to model natural languages = a general mechanism.
- Types in the Lambek calculus:
 - Primitive (atomic) types Pr (denoted as p, q, r, np etc.)
 - Complex types are built from primitive ones using binary connectives $\backslash,$ / and $\cdot.$

- Lambek 1958: a logical formalism designed to model natural languages = a general mechanism.
- Types in the Lambek calculus:
 - Primitive (atomic) types Pr (denoted as p, q, r, np etc.)
 - Complex types are built from primitive ones using binary connectives $\backslash,$ / and $\cdot.$
- Example: $p/(q \setminus p)$, $(p \cdot q)/(q \cdot p)$ are types.

- Lambek 1958: a logical formalism designed to model natural languages = a general mechanism.
- Types in the Lambek calculus:
 - Primitive (atomic) types Pr (denoted as p, q, r, np etc.)
 - Complex types are built from primitive ones using binary connectives $\backslash,$ / and $\cdot.$
- Example: $p/(q \setminus p)$, $(p \cdot q)/(q \cdot p)$ are types.
- A sequent is a structure of the form $A_1, \ldots, A_n \to B$ where A_i, B are types.

Lambek calculus: Axiom and Rules

$$\begin{array}{l} \overline{A \to A} \quad (Ax) \\ \hline \Pi \to A \quad \Gamma, B, \Delta \to C \\ \overline{\Gamma, \Pi, A \setminus B, \Delta \to C} \quad (\setminus \to) \qquad \frac{A, \Pi \to B}{\Pi \to A \setminus B} \quad (\to \setminus) \\ \hline \frac{\Pi \to A \quad \Gamma, B, \Delta \to C}{\Gamma, B/A, \Pi, \Delta \to C} \quad (/ \to) \qquad \frac{\Pi, A \to B}{\Pi \to B/A} \quad (\to /) \\ \hline \frac{\Gamma, A, B, \Delta \to C}{\Gamma, A \cdot B, \Delta \to C} \quad (\cdot \to) \qquad \frac{\Pi \to A \quad \Psi \to B}{\Pi, \Psi \to A \cdot B} \quad (\to \cdot) \end{array}$$

 $\Gamma, \Delta, \Pi, \Psi$ are sequences of types ($\Pi, \Psi \neq \Lambda$), A, B, C are types.

Definition

A sequent $\Pi \to A$ is derivable if it can be obtained from axiom sequents using rules. This is denoted as $L \vdash \Pi \to A$.

•
$$L \vdash np, (np \setminus s)/np, np \rightarrow s$$
:

$$\frac{s \to s \quad np \to np}{\frac{np, np \setminus s \to s}{np, (np \setminus s)/np, np \to s}} (\setminus \to)$$

•
$$L \vdash np, (np \setminus s)/np, np \rightarrow s$$
:

$$\frac{s \to s \quad np \to np}{\frac{np, np \setminus s \to s}{np, (np \setminus s)/np, np \to s}} (\setminus \to)$$

•
$$\mathrm{L} \vdash p \cdot (p \backslash q) \rightarrow q$$
:
 $\frac{q \rightarrow q \quad p \rightarrow p}{p, (p \backslash q) \rightarrow q} (\backslash \rightarrow)$
 $\frac{p \cdot (p \backslash q) \rightarrow q}{p \cdot (p \backslash q) \rightarrow q} (\cdot \rightarrow)$

Lambek Categorial Grammars

Definition

A Lambek categorial grammar consists of

- An alphabet Σ;
- A finite correspondence ▷, which assigns one or several types to each symbol in Σ.
- A distinguished type *S*.

Lambek Categorial Grammars

Definition

A Lambek categorial grammar consists of

- An alphabet Σ;
- A finite correspondence ▷, which assigns one or several types to each symbol in Σ.
- A distinguished type S.

It generates the language of the strings $a_1 \dots a_n$ over Σ such that:

$$\begin{array}{cccc} a_1 & \dots & a_n \\ \triangleright & & \triangleright \\ \mathbf{L} \vdash & T_1, \dots, T_n & \to S \end{array}$$

• *s*, *np* — primitive types.

- *s*, *np* primitive types.
- Alphabet Σ : Olaf, Astrid, loves, sleeps.

- *s*, *np* primitive types.
- Alphabet Σ : Olaf, Astrid, loves, sleeps.
- Correspondence:

Astrid	\triangleright	np
Olaf	\triangleright	np
loves	\triangleright	$(np \setminus s)/np$
sleeps	\triangleright	npackslash s

- *s*, *np* primitive types.
- Alphabet Σ : Olaf, Astrid, loves, sleeps.
- Correspondence:

Astrid \triangleright npOlaf \triangleright nploves \triangleright $(np \setminus s) / np$ sleeps \triangleright $np \setminus s$

• Distinguished type: *s* (sentence).

- *s*, *np* primitive types.
- Alphabet Σ : Olaf, Astrid, loves, sleeps.
- Correspondence:

Astrid	\triangleright	np
Olaf	\triangleright	np
loves	\triangleright	$(np \setminus s)/np$
sleeps	\triangleright	np ackslash s

- Distinguished type: *s* (sentence).
- This grammar accepts strings like *Olaf sleeps*, *Olaf loves Astrid* etc. *Olaf loves Astrid* \triangleright \triangleright \triangleright $L \vdash np, (np \setminus s)/np, np \rightarrow s$

ICGT 2021:

 $\bullet\,$ Hypergraph Lambek calculus ${\rm HL}$ and hypergraph Lambek grammars.

- $\bullet\,$ Hypergraph Lambek calculus ${\rm HL}$ and hypergraph Lambek grammars.
- Generalized types, sequents, axioms and rules.

- Hypergraph Lambek calculus HL and hypergraph Lambek grammars.
- Generalized types, sequents, axioms and rules.
- The membership problem for hypergraph Lambek grammars is NP-complete.

- Hypergraph Lambek calculus HL and hypergraph Lambek grammars.
- Generalized types, sequents, axioms and rules.
- The membership problem for hypergraph Lambek grammars is NP-complete.
- Hypergraph Lambek grammars are able to generate more languages than hyperedge replacement grammars (the language of all graphs, languages with non-linear growth of the number of edges etc.).

- Hypergraph Lambek calculus HL and hypergraph Lambek grammars.
- Generalized types, sequents, axioms and rules.
- The membership problem for hypergraph Lambek grammars is NP-complete.
- Hypergraph Lambek grammars are able to generate more languages than hyperedge replacement grammars (the language of all graphs, languages with non-linear growth of the number of edges etc.).
- What class of languages do hypergraph Lambek grammars generate?

• A hypergraph consists of nodes V and of hyperedges E. A function $att : E \to V^*$ attaches hyperedges to nodes; a function $lab : E \to C$ labels hyperedges; $ext \in V^*$ are external nodes.

- A hypergraph consists of nodes V and of hyperedges E. A function $att : E \to V^*$ attaches hyperedges to nodes; a function $lab : E \to C$ labels hyperedges; $ext \in V^*$ are external nodes.
- One can replace a hyperedge e_0 in G by a hypergraph H as follows:

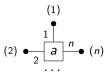
- A hypergraph consists of nodes V and of hyperedges E. A function $att : E \to V^*$ attaches hyperedges to nodes; a function $lab : E \to C$ labels hyperedges; $ext \in V^*$ are external nodes.
- One can replace a hyperedge e_0 in G by a hypergraph H as follows:
 - **1** Remove e_0 from G.

- A hypergraph consists of nodes V and of hyperedges E. A function $att : E \to V^*$ attaches hyperedges to nodes; a function $lab : E \to C$ labels hyperedges; $ext \in V^*$ are external nodes.
- One can replace a hyperedge e_0 in G by a hypergraph H as follows:
 - Remove e₀ from G.
 - Insert a copy of H.

- A hypergraph consists of nodes V and of hyperedges E. A function $att : E \to V^*$ attaches hyperedges to nodes; a function $lab : E \to C$ labels hyperedges; $ext \in V^*$ are external nodes.
- One can replace a hyperedge e_0 in G by a hypergraph H as follows:
 - Remove e₀ from G.
 - Insert a copy of H.
 - For each *i*, fuse the *i*-th external node of *H* with the *i*-th attachment node of e₀.

- A hypergraph consists of nodes V and of hyperedges E. A function $att : E \to V^*$ attaches hyperedges to nodes; a function $lab : E \to C$ labels hyperedges; $ext \in V^*$ are external nodes.
- One can replace a hyperedge e₀ in G by a hypergraph H as follows:
 - Remove e₀ from G.
 - Insert a copy of H.
 - For each *i*, fuse the *i*-th external node of *H* with the *i*-th attachment node of e₀.
 - The result is denoted as $G[e_0/H]$.

- A hypergraph consists of nodes V and of hyperedges E. A function *att* : E → V* attaches hyperedges to nodes; a function *lab* : E → C labels hyperedges; *ext* ∈ V* are external nodes.
- One can replace a hyperedge e₀ in G by a hypergraph H as follows:
 - Remove e₀ from G.
 - Insert a copy of H.
 - For each *i*, fuse the *i*-th external node of *H* with the *i*-th attachment node of e₀.
 - The result is denoted as $G[e_0/H]$.
- *a* is a hypergraph with one *a*-labeled hyperedge attached to *n* distinct nodes, which are all external in the same order as attachment nodes:



Hypergraph DPO Grammars

• We consider the category of hypergraphs without external nodes.

Hypergraph DPO Grammars

- We consider the category of hypergraphs without external nodes.
- Rules are of the form $(L \stackrel{\varphi_L}{\leftarrow} I \stackrel{\varphi_R}{\rightarrow} R)$ with a *discrete* hypergraph *I*.

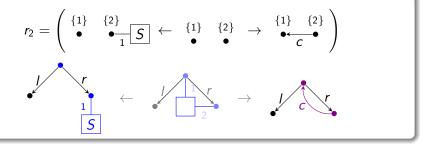
Hypergraph DPO Grammars

- We consider the category of hypergraphs without external nodes.
- Rules are of the form $(L \stackrel{\varphi_L}{\leftarrow} I \stackrel{\varphi_R}{\rightarrow} R)$ with a *discrete* hypergraph *I*.

Hypergraph DPO Grammars

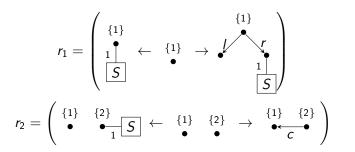
- We consider the category of hypergraphs without external nodes.
- Rules are of the form $(L \stackrel{\varphi_L}{\leftarrow} I \stackrel{\varphi_R}{\rightarrow} R)$ with a *discrete* hypergraph *I*.

Example

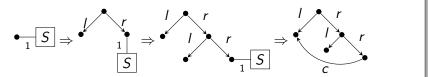


DPO grammar — Example

Let the start hypergraph be $\bullet_1 S$, and let the productions be as follows:



Example



Results of this work

Definition

Given a DPO hypergraph grammar with a start hypergraph S and a set of productions P, let $L_c(HGr)$ consist of all hypergraphs $H \in L(HGr)$ such that there exists a derivation $S \stackrel{*}{\Rightarrow}_P H$ with no more than $c \cdot |E_H|$ steps.

Results of this work

Definition

Given a DPO hypergraph grammar with a start hypergraph S and a set of productions P, let $L_c(HGr)$ consist of all hypergraphs $H \in L(HGr)$ such that there exists a derivation $S \stackrel{*}{\Rightarrow}_P H$ with no more than $c \cdot |E_H|$ steps.

Theorem

If HGr is a DPO grammar and $1 \le c \in \mathbb{N}$, then the language $L_c(HGr)$ can be generated by a hypergraph Lambek grammar.

Results of this work

Definition

Given a DPO hypergraph grammar with a start hypergraph S and a set of productions P, let $L_c(HGr)$ consist of all hypergraphs $H \in L(HGr)$ such that there exists a derivation $S \stackrel{*}{\Rightarrow}_P H$ with no more than $c \cdot |E_H|$ steps.

Theorem

If HGr is a DPO grammar and $1 \le c \in \mathbb{N}$, then the language $L_c(HGr)$ can be generated by a hypergraph Lambek grammar.

Claim: each language generated by a hypergraph Lambek grammar is of the form $L_c(HGr)$ for some DPO grammar HGr.

• Types are labels of hyperedges.

- Types are labels of hyperedges.
- They are defined inductively.

- Types are labels of hyperedges.
- They are defined inductively.
- There is the set of primitive types Pr and two constructors of types:
 ÷ (division) and × (product).

- Types are labels of hyperedges.
- They are defined inductively.
- There is the set of primitive types Pr and two constructors of types:
 ÷ (division) and × (product).
- Let N be a type and let D be a hypergraph such that all its hyperedges except for one are labeled by types, and the remaining one is labeled by a special n label. Then $N \div D$ is a type.

- Types are labels of hyperedges.
- They are defined inductively.
- There is the set of primitive types Pr and two constructors of types:
 ÷ (division) and × (product).
- Let N be a type and let D be a hypergraph such that all its hyperedges except for one are labeled by types, and the remaining one is labeled by a special n label. Then $N \div D$ is a type.
- Let M be a hypergraph labeled by types. Then imes(M) is a type.

- Types are labels of hyperedges.
- They are defined inductively.
- There is the set of primitive types Pr and two constructors of types:
 ÷ (division) and × (product).
- Let N be a type and let D be a hypergraph such that all its hyperedges except for one are labeled by types, and the remaining one is labeled by a special n label. Then $N \div D$ is a type.
- Let M be a hypergraph labeled by types. Then imes(M) is a type.

- Types are labels of hyperedges.
- They are defined inductively.
- There is the set of primitive types Pr and two constructors of types:
 ÷ (division) and × (product).
- Let N be a type and let D be a hypergraph such that all its hyperedges except for one are labeled by types, and the remaining one is labeled by a special $\$_n$ label. Then $N \div D$ is a type.
- Let M be a hypergraph labeled by types. Then $\times(M)$ is a type.

Example

Let s, p_c be primitive types.

$$\mathrm{DPO}(r_2) = \times \begin{pmatrix} (1) & (2) \\ \bullet & \bullet_1 \end{bmatrix} \div \begin{pmatrix} (1) & (2) \\ \bullet & \bullet_2 \end{pmatrix}$$

Hypergraph Lambek Calculus - Sequents

Definition

A sequent is a structure of the form $H \rightarrow A$ where H is a hypergraph labeled by types and A is a type.

Hypergraph Lambek Calculus — Axiom and Rules

Axiom:
$$A^{\bullet} \to A$$
 (A is a type).

$$\frac{H[e/N^{\bullet}] \to A \quad H_1 \to lab_D(d_1) \quad \dots \quad H_k \to lab_D(d_k)}{H\left[e/D[e_D^{\$}/(N \div D)^{\bullet}][d_1/H_1] \dots [d_k/H_k]\right] \to A} (\div \to)$$

$$\frac{\frac{D[e_D^{\$}/F] \to N}{F \to N \div D} (\to \div)}{\frac{H_1 \to lab_M(m_1) \quad \dots \quad H_l \to lab_M(m_l)}{M[m_1/H_1] \dots [m_l/H_l] \to \times(M)} (\to \times)$$

$$\frac{H[e/M] \to A}{H[e/(\times(M))^{\bullet}] \to A} (\times \to)$$

Here $e \in E_H$; $E_D = \{e_D^{\$}, d_1, \dots, d_k\}$; $E_M = \{m_1, \dots, m_l\}$.

Hypergraph Lambek Grammars

Definition

A hypergraph Lambek grammar consists of

- A terminal alphabet of labels Σ;
- A finite correspondence ▷, which assigns one or several types of the hypergraph Lambek calculus to each symbol in Σ.
- A distinguished type *S*.

Hypergraph Lambek Grammars

Definition

A hypergraph Lambek grammar consists of

- A terminal alphabet of labels Σ;
- A finite correspondence ▷, which assigns one or several types of the hypergraph Lambek calculus to each symbol in Σ.
- A distinguished type *S*.

This grammar generates the language of hypergraphs G over Σ , for which a function $f_G: E_G \to Tp$ exists such that

- $lab_G(e) \triangleright f_G(e)$ for all hyperedges $e \in E_G$;
- **2** If $f_G(G)$ is the result of relabeling of G using f_G , then

$$\operatorname{HL} \vdash f_G(G) \to S.$$

From DPO to Hypergraph Lambek Grammars

• Hypergraph Lambek calculus HL works with types and sequents = with nested structures made of hypergraphs.

From DPO to Hypergraph Lambek Grammars

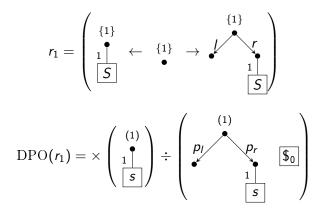
- Hypergraph Lambek calculus HL works with types and sequents = with nested structures made of hypergraphs.
- Each rule application leaves a "trace", namely, a new type appears after any rule application.

From DPO to Hypergraph Lambek Grammars

- Hypergraph Lambek calculus HL works with types and sequents = with nested structures made of hypergraphs.
- Each rule application leaves a "trace", namely, a new type appears after any rule application.
- To prove the theorem we encode DPO rules by types of the hypergraph Lambek calculus.

Example of a convertion

Consider the DPO grammar with the start hypergraph $\bullet_1 S$ and with the productions r_1 , r_2 . We introduce new primitive types p_1 , p_r , p_c , s.



Example of a convertion

Consider the DPO grammar with the start hypergraph $\bullet_1 S$ and with the productions r_1 , r_2 . We introduce new primitive types p_1 , p_r , p_c , s.

$$r_{2} = \begin{pmatrix} \{1\} & \{2\} \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \leftarrow \{1\} & \{2\} \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \leftarrow \{1\} & \{2\} \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \div \begin{pmatrix} \{1\} & \{2\} \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \\ DPO(r_{2}) = \times \begin{pmatrix} (1) & (2) \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \div \begin{pmatrix} (1) & (2) \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \div \begin{pmatrix} (1) & (2) \\ \bullet & \bullet_{1} & \mathbf{S} \end{pmatrix} \end{pmatrix}$$

Example of a convertion

If we want to generate $L_2(HGr)$, then we construct the following grammar:

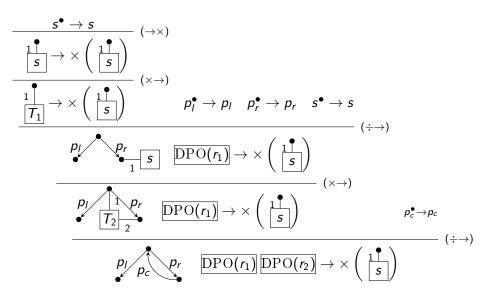
- Alphabet: I, r, c.
- A correspondence:

•
$$l \triangleright p_l, r \triangleright p_r, c \triangleright p_c;$$

• $l \triangleright \times \left((1) \stackrel{p_l}{\longrightarrow} (2) \quad DPO(r_i) \right), r \triangleright \times \left((1) \stackrel{p_r}{\longrightarrow} (2) \quad DPO(r_i) \right),$
 $c \triangleright \times \left((1) \stackrel{p_c}{\longrightarrow} (2) \quad DPO(r_i) \right);$
• $l \triangleright \times \left((1) \stackrel{p_l}{\longrightarrow} (2) \quad DPO(r_i) \quad DPO(r_j) \right),$
 $r \triangleright \times \left((1) \stackrel{p_r}{\longrightarrow} (2) \quad DPO(r_i) \quad DPO(r_j) \right),$
 $c \triangleright \times \left((1) \stackrel{p_c}{\longrightarrow} (2) \quad DPO(r_i) \quad DPO(r_j) \right).$
Here $i, j = 1, 2, 3.$
A distinguished type: $\times \left(\stackrel{\bullet}{\longrightarrow} 1 \right).$

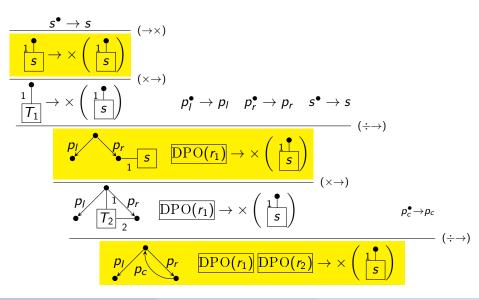
3

Example of a derivation



Tikhon Pshenitsyn (MSU)

Example of a derivation



Tikhon Pshenitsyn (MSU)

Theorem

If HGr is a DPO grammar and $1 \le c \in \mathbb{N}$, then the language $L_c(HGr)$ can be generated by a hypergraph Lambek grammar.

• The limitation is essential: DPO grammars are universal while HL-grammars are NP-complete.

Theorem

If HGr is a DPO grammar and $1 \le c \in \mathbb{N}$, then the language $L_c(HGr)$ can be generated by a hypergraph Lambek grammar.

- The limitation is essential: DPO grammars are universal while HL-grammars are NP-complete.
- Q: How to generalize the hypergraph Lambek calculus in order to overcome this limitation?

Theorem

If HGr is a DPO grammar and $1 \le c \in \mathbb{N}$, then the language $L_c(HGr)$ can be generated by a hypergraph Lambek grammar.

- The limitation is essential: DPO grammars are universal while HL-grammars are NP-complete.
- Q: How to generalize the hypergraph Lambek calculus in order to overcome this limitation?
- A: To allow one unlimitedly copying types of the form DPO(r) in left-hand sides of sequents.

Hypergraph Conjunctive Kleene Star

- Palka 2007, Kuznetsov 2021, ...: the Lambek calculus enriched with Kleene star (aka action logic).
- It allows one to unlimitedly copy types in right-hand sides of sequents.

Hypergraph Conjunctive Kleene Star

- Palka 2007, Kuznetsov 2021, ...: the Lambek calculus enriched with Kleene star (aka action logic).
- It allows one to unlimitedly copy types in right-hand sides of sequents.

Definition

The hypergraph Lambek calculus with conjunctive Kleene star $^{*}\mathrm{HL}_{\omega}$:

- Types are built using an additional constructor: if A is a type of rank
 0, then ^{*}_OA is also a type.
- We add the following rules:

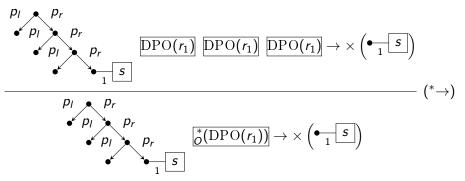
$$\frac{(H \to \times (n \cdot A^{\bullet}))_{n=0}^{\infty}}{H \to {}_{O}^{*}A} \ (\to^{*})_{\omega} \qquad \qquad \frac{G + n \cdot A^{\bullet} \to B}{G + {}_{O}^{*}A^{\bullet} \to B} \ (^{*} \to), \ n \ge 0$$

Here G + H is a disjoint sum of hypergraphs, and $n \cdot H$ is H copied n times.

Tikhon Pshenitsyn (MSU)

Hypergraph Conjunctive Kleene Star

- Palka 2007, Kuznetsov 2021, ...: the Lambek calculus enriched with Kleene star (aka action logic).
- It allows one to unlimitedly copy types in right-hand sides of sequents.



Theorem (cut elimination)

$\textit{If} * \mathrm{HL}_{\omega} \vdash \textit{H} \rightarrow \textit{A and} * \mathrm{HL}_{\omega} \vdash \textit{G}[e/\textit{A}^{\bullet}] \rightarrow \textit{B, then} * \mathrm{HL}_{\omega} \vdash \textit{G}[e/\textit{H}] \rightarrow \textit{B}.$

Results

Theorem (cut elimination)

 $\textit{If }^*\text{HL}_{\omega} \vdash \textit{H} \rightarrow \textit{A and }^*\text{HL}_{\omega} \vdash \textit{G}[e/\textit{A}^\bullet] \rightarrow \textit{B, then }^*\text{HL}_{\omega} \vdash \textit{G}[e/\textit{H}] \rightarrow \textit{B}.$

Theorem

Each language generated by a DPO grammar can be generated by a categorial grammar over the calculus $^{*}\mathrm{HL}_{\omega}$.

Theorem (cut elimination)

 $\textit{If }^*\text{HL}_{\omega} \vdash \textit{H} \rightarrow \textit{A and }^*\text{HL}_{\omega} \vdash \textit{G}[e/\textit{A}^\bullet] \rightarrow \textit{B, then }^*\text{HL}_{\omega} \vdash \textit{G}[e/\textit{H}] \rightarrow \textit{B}.$

Theorem

Each language generated by a DPO grammar can be generated by a categorial grammar over the calculus $^*\mathrm{HL}_{\omega}$.

Theorem

The problem of whether a sequent is derivable in $^*\mathrm{HL}_\omega$ is undecidable.

• DPO rules can be modeled by types of the hypergraph Lambek calculus.

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.
- Future work:

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.
- Future work:
 - It complete the description of languages generated by HL-grammars.

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.
- Future work:
 - To complete the description of languages generated by HL-grammars.
 - Or the second second

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.
- Future work:
 - To complete the description of languages generated by HL-grammars.
 - 2 To develop a more general definition of the hypergraph Lambek calculus using the category theory.
 - How powerful are categorial grammars based on $^*\mathrm{HL}_{\omega}$?

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.
- Future work:
 - To complete the description of languages generated by HL-grammars.
 - 2 To develop a more general definition of the hypergraph Lambek calculus using the category theory.
 - How powerful are categorial grammars based on $^*\mathrm{HL}_{\omega}$?

- DPO rules can be modeled by types of the hypergraph Lambek calculus.
- Languages generated by DPO grammars with the length of a derivation linearly bounded by the number of hyperedges ⊆ (=) languages generated by HL-grammars.
- The former class itself is interesting.
- Hypergraph Lambek grammars enriched with the conjunctive Kleene star subsume DPO grammars and thus are universal.
- Future work:
 - To complete the description of languages generated by HL-grammars.
 - 2 To develop a more general definition of the hypergraph Lambek calculus using the category theory.
 - **③** How powerful are categorial grammars based on ${}^*\mathrm{HL}_{\omega}$?

Thank you for attention!