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Introduction

Introduction

Last year, we proposed the algebraic graph rewriting formalism PBPO™:

Overbeek, R., Endrullis, J., and Rosset, A. (2021). Graph rewriting and relabeling with PBPO ™.
In Proc. Conf. on Graph Transformation (ICGT21), LNCS

which is a modification of PBPO:

Corradini, A., Duval, D., Echahed, R., Prost, F., and Ribeiro, L. (2017). The pullback-pushout
approach to algebraic graph transformation.
In Proc. Conf. on Graph Transformation (ICGT17), LNCS

Multiple tutorials exist for DPO and SPO, but none for PBPO™ or related
algebraic formalisms (PBPO, AGREE).
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Didactic Approach

We will introduce two toy formalisms:

- ToyPushout (ToyPO)
- ToyPullback (ToyPB)

And we will see how they combine into PBPO™.



Introduction

Didactic Approach

We will introduce two toy formalisms:

- ToyPushout (ToyPO)
- ToyPullback (ToyPB)

And we will see how they combine into PBPO™.

Definition (Graph)
A graph G = (V, E, s, t) consists of a set of vertices V, a set edges E, a source

function s: E — V and a target function t: E — V.

A graph homomorphism G — G’ consists of functions

. (1)\/ . VG — VG/
. d)E 5 EG — Eg/
such that

* Sgrobr = dyosg
cterode = dyots
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We can interpret a graph homomorphism p as a graph rewrite rule:
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ToyPO Rule and Match

We can interpret a graph homomorphism p as a graph rewrite rule:
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ToyPO Rule and Match

We can interpret a graph homomorphism p as a graph rewrite rule:

- @—® — @9 © -r

~

“identify nodes a and b, and add a node ¢”

Definition (ToyPO Rule)
A ToyPO rule is a morphism p: L — R. L and R are called patterns.

Injective homomorphisms m : L — G model finding occurrences of L in G:
m
= @—® > @—0—0® @@ -c

Definition (ToyPO Match)

A ToyPO match forarule p: L — Rin G is an injective morphism m: L »— G.
Image m(L) is an occurrence of L in G.
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ToyPO Rewrite Step

Definition (Pushout)

The pushout of a span G &~ L % R
L —e—> R

o +3-
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ToyPO Rewrite Step

Definition (Pushout)

The pushout of aspan G &£ L % R
isacospanc = G5 H <& R

L —e—> R
| I
m iR
~+ ~

G —ic—~ H
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ToyPO Rewrite Step

Definition (Pushout)
The pushout of aspan G &£ L % R

isacospan o = G-% H <& R such that L—0o—> R
| .

1. ois a candidate solution: icom =iz o p; mo= R
G —ig—> H
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ToyPO Rewrite Step
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Definition (Pushout)
The pushout of aspan G &£ L % R

isacospan o = G-% H <& R such that L —o— R
1. ois a candidate solution: icom =iz o p; \’l; = E \ )
2. o is the minimal solution: for any cospan G —ig—+ H !
GiH’iRthatsatisﬁes ig'om=ig' op, \\ \L
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ToyPO Rewrite Step
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Definition (Pushout)
The pushout of aspan G &£ L % R

isacospan o = G-% H <& R such that L —o— R
1. ois a candidate solution: icom =iz o p; noo= E \ )
2. o is the minimal solution: for any cospan G —ig»H = !
GiH’iRthatsatisﬁesiG’om:iR’op, \\ = !XJ\L
there exists a unique x : H — H’ with i H

iG/:XOiG and iR/:XOiR.
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ToyPO Rewrite Step

@—® — @O ©
Im PO IIR
@ @@ i, @ ©= Q)
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Definition (Pushout)
The pushout of aspan G &+ L % R

isacospan o = G-% H <& R such that L —p— R
1. ois a candidate solution: icom =iz o p; ﬁ = f \ )
2. ¢ is the minimal solution: for any cospan G—is>H = !
62 1 & R that satisfies ig'om=1ig' op, \\ = K J\
there exists a unique x: H — H’ with ' H

iG/:XOfG and iR/:XOiR.

Think of a pushout as a gluing construction or a fibered union.
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ToyPO Rewrite Step

@ @200 i @ @@
W — 0\
@—® @D ©
Definition (ToyPO Rewrite Step)

Arule p: L — Rand match m: L — G induce a ToyPO rewrite step
G =4, po H if there exists a pushout of the form:

L —e—> R
Y |
m PO iR
G*Q}%H
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Inverting ToyPO

Deleting and Duplicating

The pushout allows us to identify and add elements.
But we would also like to delete and duplicate elements.

First idea: read a morphism from

- 0—® > @O ® -r

“duplicate node ab (orienting the loop from a to b), and delete node ¢”

Definition (Pushout Complement)

A pushout complement for G &£ R & L
is a pair of morphisms G & H & [ such that we have:

R +<p— L
v

G < b — H
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ing ToyPO

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

@<p_®

Im
. @0—0®
— Not necessarily a problem:

- For graphs, it blocks application when edges would be left dangling.
- But: we might prefer some other policy (highly domain-dependent).

2. Pushout complements are not always unique:

@ «— @0

Ir oo |
@ «— @05

— usually a problem:
- nondeterminism & changes rule semantics
- difficult question: under what conditions are pushout complements unique?
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g . l
A DPO rewrite rule p is a span L — K = R.
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Definition (Double Pushout Rewriting [Ehrig et al., 1973])

. . l .
A DPO rewrite rule p is a span L «~ K - R. A diagram

L+1—K—r—R
m PO | PO |

<+
GL%GKHGR

defines a DPO rewrite step G, =27, Gg.
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- not in all categories; and
- we lose the ability to duplicate.
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Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

. . l :

A DPO rewrite rule p is a span L «— K = R. A diagram
L+1—K—r—R
m PO | PO |
GL — GK — GR

defines a DPO rewrite step G, =27, Gg.

Injective [ ensures uniqueness of pushout complements in Graph, but:

- not in all categories; and
- we lose the ability to duplicate.

Alternative approaches:

- Single Pushout (SPO): partial morphisms, deletes dangling edges
- Sesqui Pushout (SqPO): final pullback complements, allows duplication
- AGREE: uses partial map classifiers, allows more control over duplication
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A Different Strategy: Dualizing ToyPO

— Instead of a match m: L — G, we will look foran oc: G — L.

Questions:

10f

" = a b
~ —

how can we describe those G for which there exists an «: G — L'?
Bipartite or 2-colorable, where « is a proof (assigns node colors).

2. If
:ij ?

Any graph, where an o« assigns one of 2 edge “colors” to each edge.
So we can now think of L’ as a type graph, and « a typing.
We will call « an adherence.

Definition (ToyPB Rule)
A ToyPB rule is a morphism p: L’ «+ R’. L and R’ are called type graphs.



ToyPB
[e] lee)

Examples of Expected Behavior

Example
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Example

<— @

f— @

—>

a1 A b1 b‘\
Oz ~|b

@S0 «— @—®
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Example
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ey 1

@0 <— @6 *

Example

G@DD «— @—0®
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Example

<— @

Pe— (i §

—>
a1 A bj bj
Gz ~|b \7

[y
G

l,a
a a
Canand <— (}-{)

S P
@S0 «— @—0
Example

G@DD «— @—0®



Examples of Expected Behavior

Example

<— @

Pe— (i §

—>

C11 — b1 bq
Gz ~|b

@S0 «— @—®

Example
h
G by b)—0)

G@DD «— @—0® -

x

Canand <— (}-{)
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Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan G % L' & R’

FR= G

L" +eo— R’
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Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan G % L’ & R’ is a
spang = GEHBR

G g — H
‘ |
o iR
<+ ~

L" +eo— R’
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Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan G % L’ & R’ is a
span o = G <& H & R such that
1. ois a candidate solution: cco i = p o ig;

G g — H
| |
[od = IR
~ v
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Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan G % L’ & R’ is a

spano = G £ H & Rsuch that o H
1. o is a candidate solution: o i = poig; / - /
2. ois the minimal solution: for any span G «ic— H -

G & H' % R’ that satisfies « = s fR’
aois’ =poig’, there exists a unique ; o E, /

morphism x : H" — H such that
"G’ = iG oxand iR/ = iR o X.
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Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan G % L’ & R’ is a
span o = G <& H & R such that

1. o is a candidate solution: xoi; = p o ig; / - /

2. o is the minimal solution: for any span G «ic— H R
G £ H’ % R’ that satisfies & = i .
aois’ =poig’, there exists a unique v v /

. , L" «~p— R’
morphism x : H" — H such that
"Gl :iG oxand iR/ = iR o X.

Think of a pullback as a fibered product:
H={(x,y) € Gx R | a(x) = p(y)}
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Definition (ToyPB Rule)
A ToyPB rule is a morphism p: L’ < R’. L and R’ are called type graphs.

Definition (Adherence Morphism)
An adherence for a ToyPB rule p: L’ < R’ is a morphism o: G — L’.

Definition (ToyPB Rewrite Step)
AToyPBrule p: L'+ R’ and adherence morphism «: G — L’ induce a
ToyPB rewrite step G =7.5 pp H if there exists a pullback of the form

G —ig — H
¢ PB g
L «<p— R’



Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

L +<1—= K K —r— R
Y Y Y
™ PO m n PO |
- v v
G+— X X —— H
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Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

—~1— K—r—=+R
v Fo |
X H

D ¢3< ™
T
o

Combining ToyPB with ToyPO is less immediate because they work on
different layers.

We need to:

1. make matches and adherences play nice; and
2. find the right way to link a ToyPO step to a ToyPB step.



Computing Preimages with Pullbacks

If one leg of a pullback is injective, pullbacks compute preimages:

{even} «— parity~" (subset) {2, 4,6}
subset PB
{odd, even} <—— parity {1,2,3,4,5,6}



PBPO* Rewrite Rule

Definition (PBPO+ Rule [Corradini et al., 2019, Overbeek et al., 2021])
A PBPO™ rewrite rule p is a diagram

L+—i1— K—r—+R
p = I PB i
L' «v— K

L is the lhs pattern of the rule, L’ its type graph, and t, the embedding of L
into L. K is the interface. R is the rhs pattern or replacement for L.



Strong Match
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For the step, we will find a match m: L — G and adherence «: G — L’. We
want o to map only the occurrence m(L) into the type graph embedding t,(L).
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For the step, we will find a match m: L — G and adherence «: G — L’. We
want o to map only the occurrence m(L) into the type graph embedding t,(L).

In other words, the preimage o™ (t;) must be L. We call this a strong match.



Strong Match

‘o) coee) | [ @) co-ee)
I PB L = I
‘co) cecen | | [co)( cozen |

For the step, we will find a match m: L — G and adherence «: G — L’. We
want o to map only the occurrence m(L) into the type graph embedding t,(L).

In other words, the preimage o™ (t;) must be L. We call this a strong match.

The right is a commuting square, but not a pullback.



Definition: PBPO" Rewrite Step

l
Le— kL3R

tLI PB ItK

L/ ¢ [, K/

‘o eeo | @ o]

L’ K’

-0 | § &




Definition: PBPO" Rewrite Step

[ , K——R
L<—K——R
tLI " ItK L
I ( !
t [’ K 1LI
! v k

‘o eeo | @ o]

L’ K’

-0 | § &




Definition: PBPO" Rewrite Step

t PB | ¢
L . L>—>GL

I !
LK 1LIPB (x

ER—®

G

m~®
® HO

L o K’

@E—0| @@ 0




Definition: PBPO" Rewrite Step
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Definition: PBPO" Rewrite Step

GL-®GK@ & 0 GR-@?@
X1X2—> wa
B HO @\@\c@ ® 66
L K\ K’ ~
0| @ @0
@@ @12229
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Closing Remarks

We intend to develop a tool for teaching.

Thank you!
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