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Introduction

Last year, we proposed the algebraic graph rewriting formalism PBPO+:

Overbeek, R., Endrullis, J., and Rosset, A. (2021). Graph rewriting and relabeling with PBPO+ .
In Proc. Conf. on Graph Transformation (ICGT21), LNCS

which is a modification of PBPO:

Corradini, A., Duval, D., Echahed, R., Prost, F., and Ribeiro, L. (2017). The pullback-pushout
approach to algebraic graph transformation.
In Proc. Conf. on Graph Transformation (ICGT17), LNCS

Multiple tutorials exist for DPO and SPO, but none for PBPO+ or related
algebraic formalisms (PBPO, AGREE).
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Didactic Approach

We will introduce two toy formalisms:

• ToyPushout (ToyPO)
• ToyPullback (ToyPB)

And we will see how they combine into PBPO+.

Definition (Graph)
A graph G = (V, E, s, t) consists of a set of vertices V, a set edges E, a source
function s : E→ V and a target function t : E→ V.

A graph homomorphism G→ G ′ consists of functions

• ϕV : VG → VG′

• ϕE : EG → EG′

such that

• sG′ ◦ ϕE = ϕV ◦ sG
• tG′ ◦ ϕE = ϕV ◦ tG
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ToyPO Rule and Match

We can interpret a graph homomorphism ρ as a graph rewrite rule:

a bL =
ρ

a b c = R

≈
“identify nodes a and b, and add a node c”

Definition (ToyPO Rule)
A ToyPO rule is a morphism ρ : L→ R. L and R are called patterns.

Injective homomorphisms m : L ↣ G model finding occurrences of L in G:

a bL =
m a bd e f = G

Definition (ToyPO Match)
A ToyPO match for a rule ρ : L→ R in G is an injective morphism m : L ↣ G.
Image m(L) is an occurrence of L in G.
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ToyPO Rewrite Step

a b
ρ

a b c

m

a b

d e f

iR

iG

PO

a b c

d e f

Definition (Pushout)
The pushout of a span G m← L ρ→ R

is a cospan σ = G iG→ H iR← R such that

1. σ is a candidate solution: iG ◦m = iR ◦ ρ;
2. σ is the minimal solution: for any cospan

G
i′G→ H ′ i′R← R that satisfies iG ′ ◦m = iR ′ ◦ ρ,

there exists a unique x : H→ H ′ with
iG ′ = x ◦ iG and iR ′ = x ◦ iR.

L R

G

H

H ′

ρ

m iR
iR ′

=iG

=

iG ′

= !x

Definition (ToyPO Rewrite Step)
A rule ρ : L→ R and match m : L ↣ G induce a ToyPO rewrite step
G⇒ρ,m

ToyPO H if there exists a pushout of the form:

L R

G

H

ρ

m iR

iG

PO
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Think of a pushout as a gluing construction or a fibered union.
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Deleting and Duplicating

The pushout allows us to identify and add elements.

But we would also like to delete and duplicate elements.

First idea: read a morphism from right to left:

a bL =
ρ

a b c = R

≈
“duplicate node ab (orienting the loop from a to b), and delete node c”

Definition (Pushout Complement)
A pushout complement for G m← R ρ← L

is a pair of morphisms G l2← H l1← L such that we have:

R L

G

H

m

ρ

l1PO
l2
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Two Caveats

1. Pushout complements might not exist (for this example: why not?):

a
ρ

∅

m

a b

=⇒ Not necessarily a problem:
• For graphs, it blocks application when edges would be left dangling.
• But: we might prefer some other policy (highly domain-dependent).

2. Pushout complements are not always unique:

a b
ρ

a b

m

a b
a b

PO

a b

=⇒ usually a problem:
• nondeterminism & changes rule semantics
• difficult question: under what conditions are pushout complements unique?
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a
ρ

∅

m

a b
=⇒ Not necessarily a problem:

• For graphs, it blocks application when edges would be left dangling.
• But: we might prefer some other policy (highly domain-dependent).
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Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span L
l↢ K r→ R.

A diagram
L K R

GL GK GR

m

l r

PO PO

defines a DPO rewrite step GL ⇒ρ,m
DPO GR.

Injective l ensures uniqueness of pushout complements in Graph, but:

• not in all categories; and
• we lose the ability to duplicate.

Alternative approaches:

• Single Pushout (SPO): partial morphisms, deletes dangling edges
• Sesqui Pushout (SqPO): final pullback complements, allows duplication
• AGREE: uses partial map classifiers, allows more control over duplication
• …



. .. .
Introduction

. .. .
ToyPO

. .. .. .
Inverting ToyPO

. .. .. .. .
ToyPB

. .. .. .. .. .
PBPO+

. .
Conclusion

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span L
l↢ K r→ R. A diagram

L K R

GL GK GR

m

l r

PO PO

defines a DPO rewrite step GL ⇒ρ,m
DPO GR.

Injective l ensures uniqueness of pushout complements in Graph, but:

• not in all categories; and
• we lose the ability to duplicate.

Alternative approaches:

• Single Pushout (SPO): partial morphisms, deletes dangling edges
• Sesqui Pushout (SqPO): final pullback complements, allows duplication
• AGREE: uses partial map classifiers, allows more control over duplication
• …



. .. .
Introduction

. .. .
ToyPO

. .. .. .
Inverting ToyPO

. .. .. .. .
ToyPB

. .. .. .. .. .
PBPO+

. .
Conclusion

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span L
l↢ K r→ R. A diagram

L K R

GL GK GR

m

l r

PO PO

defines a DPO rewrite step GL ⇒ρ,m
DPO GR.

Injective l ensures uniqueness of pushout complements in Graph, but:

• not in all categories; and
• we lose the ability to duplicate.

Alternative approaches:

• Single Pushout (SPO): partial morphisms, deletes dangling edges
• Sesqui Pushout (SqPO): final pullback complements, allows duplication
• AGREE: uses partial map classifiers, allows more control over duplication
• …



. .. .
Introduction

. .. .
ToyPO

. .. .. .
Inverting ToyPO

. .. .. .. .
ToyPB

. .. .. .. .. .
PBPO+

. .
Conclusion

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span L
l↢ K r→ R. A diagram

L K R

GL GK GR

m

l r

PO PO

defines a DPO rewrite step GL ⇒ρ,m
DPO GR.

Injective l ensures uniqueness of pushout complements in Graph, but:

• not in all categories; and
• we lose the ability to duplicate.

Alternative approaches:

• Single Pushout (SPO): partial morphisms, deletes dangling edges
• Sesqui Pushout (SqPO): final pullback complements, allows duplication
• AGREE: uses partial map classifiers, allows more control over duplication
• …



. .. .
Introduction

. .. .
ToyPO

. .. .. .
Inverting ToyPO

. .. .. .. .
ToyPB

. .. .. .. .. .
PBPO+

. .
Conclusion

A Different Strategy: Dualizing ToyPO

=⇒ Instead of a match m : L→ G, we will look for an α : G→ L ′.

Questions:

1. If
L ′ = a b

how can we describe those G for which there exists an α : G→ L ′?
Bipartite or 2-colorable, where α is a proof (assigns node colors).

2. If

L ′ = x ?

Any graph, where an α assigns one of 2 edge “colors” to each edge.

So we can now think of L ′ as a type graph, and α a typing.
We will call α an adherence.
Definition (ToyPB Rule)
A ToyPB rule is a morphism ρ : L ′ ← R ′. L ′ and R ′ are called type graphs.
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Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)
The pullback of a cospan G α→ L ′ ρ← R ′

is a
span σ = G iG← H iR→ R such that
1. σ is a candidate solution: α ◦ iG = ρ ◦ iR;
2. σ is the minimal solution: for any span

G iG ′
← H ′ iR ′

→ R ′ that satisfies
α ◦ iG ′ = ρ ◦ iR ′, there exists a unique
morphism x : H ′ → H such that
iG ′ = iG ◦ x and iR ′ = iR ◦ x.

H ′

G

H

L ′ R ′

iG ′

iR ′

!x=

=

α iR

iG

=

ρ

Think of a pullback as a fibered product:

H = {(x, y) ∈ G× R ′ | α(x) = ρ(y)}
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ToyPB

Definition (ToyPB Rule)
A ToyPB rule is a morphism ρ : L ′ ← R ′. L ′ and R ′ are called type graphs.

Definition (Adherence Morphism)
An adherence for a ToyPB rule ρ : L ′ ← R ′ is a morphism α : G→ L ′.

Definition (ToyPB Rewrite Step)
A ToyPB rule ρ : L ′ ← R ′ and adherence morphism α : G→ L ′ induce a
ToyPB rewrite step G⇒ρ,α

ToyPB H if there exists a pullback of the form

G H

L ′ R ′

α iR

iG

PB
ρ
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Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

L K K R

G X X H

m

l

m′PO m′

r

PO

Combining ToyPB with ToyPO is less immediate because they work on
different layers.

We need to:

1. make matches and adherences play nice; and
2. find the right way to link a ToyPO step to a ToyPB step.
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Computing Preimages with Pullbacks

If one leg of a pullback is injective, pullbacks compute preimages:

{even} {2, 4, 6}

{odd, even} {1, 2, 3, 4, 5, 6}

subset

parity−1(subset)

PB

parity
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PBPO+ Rewrite Rule

L
x1 x2 y

K
x1 x2 y

R
x1 y x2 u

L’
x1 x2 y

z

K’
x1 x2 y

z

Definition (PBPO+ Rule [Corradini et al., 2019, Overbeek et al., 2021])
A PBPO+ rewrite rule ρ is a diagram

ρ =

L K R

L ′ K ′

tL

l

tK

r

PB
l′

L is the lhs pattern of the rule, L ′ its type graph, and tL the embedding of L
into L ′. K is the interface. R is the rhs pattern or replacement for L.
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Strong Match

L
a

L
a

G
a b b

L’
a b

α

m

tL

PB

L
a

L
a

G
a a a

L’
a b

α

m

tL

=

For the step, we will find a match m : L ↣ G and adherence α : G→ L ′. We
want α to map only the occurrencem(L) into the type graph embedding tL(L).

In other words, the preimage α−1(tL) must be L. We call this a strong match.

The right is a commuting square, but not a pullback.
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Definition: PBPO+ Rewrite Step
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Closing Remarks

We intend to develop a tool for teaching.

Thank you!
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