A PBPO+ ${ }^{+}$Graph Rewriting Tutorial

Roy Overbeek \& Jörg Endrullis
1 August 2022 @ TERMGRAPH

Vrije Universiteit Amsterdam, The Netherlands

Introduction

Last year, we proposed the algebraic graph rewriting formalism PBPO^{+}:

Overbeek, R., Endrullis, J., and Rosset, A. (2021). Graph rewriting and relabeling with PBPO+. In Proc. Conf. on Graph Transformation (ICGT21), LNCS
which is a modification of PBPO:

Corradini, A., Duval, D., Echahed, R., Prost, F., and Ribeiro, L. (2017). The pullback-pushout approach to algebraic graph transformation.
In Proc. Conf. on Graph Transformation (ICGT17), LNCS

Multiple tutorials exist for DPO and SPO, but none for PBPO^{+}or related algebraic formalisms (PBPO, AGREE).

Didactic Approach

We will introduce two toy formalisms:

- ToyPushout (ToyPO)
- ToyPullback (ToyPB)

And we will see how they combine into PBPO ${ }^{+}$.

Didactic Approach

We will introduce two toy formalisms:

- ToyPushout (ToyPO)
- ToyPullback (ToyPB)

And we will see how they combine into PBPO^{+}.

Definition (Graph)

A graph $G=(V, E, s, t)$ consists of a set of vertices V, a set edges E, a source function $s: E \rightarrow V$ and a target function $t: E \rightarrow V$.

A graph homomorphism $G \rightarrow G^{\prime}$ consists of functions

- $\phi_{V}: V_{G} \rightarrow V_{G^{\prime}}$
- $\phi_{E}: E_{G} \rightarrow E_{G^{\prime}}$
such that
- $S_{G^{\prime}} \circ \phi_{E}=\phi_{V} \circ S_{G}$
- $t_{G} \circ \phi_{E}=\phi_{V} \circ t_{G}$

ToyPO Rule and Match

We can interpret a graph homomorphism ρ as a graph rewrite rule:
"identify nodes a and b, and add a node c "

ToyPO Rule and Match

We can interpret a graph homomorphism ρ as a graph rewrite rule:

$$
L=(a) \quad \xrightarrow{\rho} \quad a \quad b) \text { (c) }=R
$$

"identify nodes a and b, and add a node $c "$
Definition (ToyPO Rule)
A ToyPO rule is a morphism $\rho: L \rightarrow R . L$ and R are called patterns.

ToyPO Rule and Match

We can interpret a graph homomorphism ρ as a graph rewrite rule:

$$
L=(a) \quad \xrightarrow{\rho} \rightarrow(b) \text { (c) }=R
$$

"identify nodes a and b, and add a node c "

Definition (ToyPO Rule)

A ToyPO rule is a morphism $\rho: L \rightarrow R . L$ and R are called patterns.

Injective homomorphisms $m: L \longmapsto G$ model finding occurrences of L in G :

$$
L=\text { (a) } \longrightarrow \text { (b) } \stackrel{m}{\longrightarrow} \text { (d) } \longrightarrow \text { (b) } \longrightarrow \rightarrow=G
$$

ToyPO Rule and Match

We can interpret a graph homomorphism ρ as a graph rewrite rule:

$$
L=a \rightarrow(b) \xrightarrow{\rho} \rightarrow \text { (c) }=R
$$

"identify nodes a and b, and add a node $c "$

Definition (ToyPO Rule)

A ToyPO rule is a morphism $\rho: L \rightarrow R . L$ and R are called patterns.

Injective homomorphisms $m: L \longmapsto G$ model finding occurrences of L in G :

$$
L=\text { (a) } \longrightarrow \text { (b) } \stackrel{m}{\longrightarrow} \text { (d) } \longrightarrow \text { (b) } \longrightarrow \rightarrow=G
$$

Definition (ToyPO Match)
A ToyPO match for a rule $\rho: L \rightarrow R$ in G is an injective morphism $m: L \mapsto G$. Image $m(L)$ is an occurrence of L in G.

ToyPO Rewrite Step

Definition (Pushout)
The pushout of a span $G \stackrel{m}{\leftarrow} L \xrightarrow{\rho} R$

$$
\begin{aligned}
& L-\rho \rightarrow R \\
& 1 \\
& m \\
& \downarrow \\
& \downarrow \\
& G
\end{aligned}
$$

ToyPO Rewrite Step

Definition (Pushout)
The pushout of a span $G \stackrel{m}{\leftarrow} L \xrightarrow{\rho} R$
is a cospan $\sigma=G \stackrel{i_{G}}{G} H \stackrel{i_{R}}{\leftarrow} R$

ToyPO Rewrite Step

Definition (Pushout)

The pushout of a span $G \stackrel{m}{\leftarrow} L \xrightarrow{\rho} R$
is a cospan $\sigma=G \xrightarrow{i} G H \stackrel{i^{R}}{\leftarrow} R$ such that

1. σ is a candidate solution: $i_{G} \circ m=i_{R} \circ \rho$;

$$
\begin{aligned}
& L-\rho \rightarrow R \\
& 1 \\
& m=1 \\
& m=i_{R} \\
& \downarrow=r^{2} \\
& G-i_{G} \rightarrow H
\end{aligned}
$$

ToyPO Rewrite Step

Definition (Pushout)

The pushout of a span $G \stackrel{m}{\leftarrow} L \xrightarrow{\rho} R$
is a cospan $\sigma=G \xrightarrow{i G} H \stackrel{i^{R}}{\leftarrow} R$ such that

1. σ is a candidate solution: $i_{G} \circ m=i_{R} \circ \rho$;
2. σ is the minimal solution: for any cospan $G \stackrel{i_{G}^{\prime}}{G} H^{\prime} \stackrel{i_{R}^{\prime}}{\leftarrow} R$ that satisfies $i_{G}{ }^{\prime} \circ m=i_{R}{ }^{\prime} \circ \rho$,

ToyPO Rewrite Step

Definition (Pushout)

The pushout of a span $G \stackrel{m}{\leftarrow} L \xrightarrow{\rho} R$
is a cospan $\sigma=G \xrightarrow{i} G H \stackrel{i^{R}}{\leftarrow} R$ such that

1. σ is a candidate solution: $i_{G} \circ m=i_{R} \circ \rho$;
2. σ is the minimal solution: for any cospan $G \stackrel{i_{G}^{\prime}}{G} H^{\prime} \stackrel{i_{R}^{\prime}}{\leftarrow} R$ that satisfies $i_{G}{ }^{\prime} \circ m=i_{R}{ }^{\prime} \circ \rho$, there exists a unique $x: H \rightarrow H^{\prime}$ with
 $i_{G}{ }^{\prime}=x \circ i_{G}$ and $i_{R}{ }^{\prime}=x \circ i_{R}$.

ToyPO Rewrite Step

Definition (Pushout)

The pushout of a span $G \stackrel{m}{\leftarrow} L \xrightarrow{\rho} R$
is a cospan $\sigma=G \xrightarrow{I_{G}} H \stackrel{\mathbb{L}^{R}}{\leftarrow} R$ such that

1. σ is a candidate solution: $i_{G} \circ m=i_{R} \circ \rho$;
2. σ is the minimal solution: for any cospan $G \stackrel{i^{\prime}}{G} H^{\prime} \stackrel{i_{R}^{\prime}}{\leftarrow} R$ that satisfies $i_{G}{ }^{\prime} \circ m=i_{R}{ }^{\prime} \circ \rho$, there exists a unique $x: H \rightarrow H^{\prime}$ with
 $i_{G}{ }^{\prime}=x \circ i_{G}$ and $i_{R}{ }^{\prime}=x \circ i_{R}$.

Think of a pushout as a gluing construction or a fibered union.

ToyPO Rewrite Step

Definition (ToyPO Rewrite Step)
A rule $\rho: L \rightarrow R$ and match $m: L \hookrightarrow G$ induce a ToyPO rewrite step $G \Rightarrow{ }_{\text {ToyPO }}^{\text {p,m }} H$ if there exists a pushout of the form:

$$
\begin{aligned}
& L-\rho \rightarrow R \\
& \underset{\downarrow}{m} \mathrm{PO} \underset{\downarrow}{\stackrel{i}{i_{R}}} \\
& G-i_{G} \rightarrow H
\end{aligned}
$$

Deleting and Duplicating

The pushout allows us to identify and add elements.

Deleting and Duplicating

The pushout allows us to identify and add elements.
But we would also like to delete and duplicate elements.

Deleting and Duplicating

The pushout allows us to identify and add elements.
But we would also like to delete and duplicate elements.
First idea: read a morphism from right to left:

$$
L=(a) \quad \rightarrow(b) \quad \xrightarrow{\rho} \quad \text { (c) }=R
$$

"duplicate node $a b$ (orienting the loop from a to b), and delete node c "

Deleting and Duplicating

The pushout allows us to identify and add elements.
But we would also like to delete and duplicate elements.
First idea: read a morphism from right to left:

$$
\begin{aligned}
& L=(a) a \rightarrow(b) \\
& \approx
\end{aligned}
$$

"duplicate node $a b$ (orienting the loop from a to b), and delete node c "

Definition (Pushout Complement)

A pushout complement for $G \stackrel{m}{\leftarrow} R \stackrel{\rho}{\leftarrow} L$

Deleting and Duplicating

The pushout allows us to identify and add elements.
But we would also like to delete and duplicate elements.
First idea: read a morphism from right to left:

$$
L=(a) \xrightarrow{\rho} \rightarrow(b) \quad=R
$$

"duplicate node $a b$ (orienting the loop from a to b), and delete node c "

Definition (Pushout Complement)

A pushout complement for $G \stackrel{m}{\leftarrow} R \stackrel{\rho}{\leftarrow}_{\leftarrow}^{L}$ is a pair of morphisms $G \stackrel{l_{2}}{\leftarrow} H \stackrel{l_{1}}{\leftarrow} L$ such that we have:

$$
\begin{array}{lll}
R & \leftarrow \rho- & L \\
1 & & 1 \\
m & \mathrm{PO} & l_{1} \\
\downarrow & & \downarrow \\
G & \leftarrow l_{2}- & H
\end{array}
$$

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

\Longrightarrow Not necessarily a problem:

- For graphs, it blocks application when edges would be left dangling.

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

\Longrightarrow Not necessarily a problem:

- For graphs, it blocks application when edges would be left dangling.
- But: we might prefer some other policy (highly domain-dependent).

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

\Longrightarrow Not necessarily a problem:

- For graphs, it blocks application when edges would be left dangling.
- But: we might prefer some other policy (highly domain-dependent).

2. Pushout complements are not always unique:

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

\Longrightarrow Not necessarily a problem:

- For graphs, it blocks application when edges would be left dangling.
- But: we might prefer some other policy (highly domain-dependent).

2. Pushout complements are not always unique:

\Longrightarrow usually a problem:

- nondeterminism \& changes rule semantics

Two Caveats

1. Pushout complements might not exist (for this example: why not?):

\Longrightarrow Not necessarily a problem:

- For graphs, it blocks application when edges would be left dangling.
- But: we might prefer some other policy (highly domain-dependent).

2. Pushout complements are not always unique:

\Longrightarrow usually a problem:

- nondeterminism \& changes rule semantics
- difficult question: under what conditions are pushout complements unique?

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span $L \stackrel{\iota}{\longleftrightarrow} K \xrightarrow{r} R$.

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span $L \stackrel{\iota}{\longleftrightarrow} K \xrightarrow{\stackrel{r}{\leftrightarrows}} R$. A diagram

defines a DPO rewrite step $G_{L} \Rightarrow{ }_{\mathrm{DPO}}^{\rho, m} G_{R}$.

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A DPO rewrite rule ρ is a span $L \stackrel{\iota}{\longleftrightarrow} K \xrightarrow{\stackrel{r}{\leftrightarrows}} R$. A diagram

defines a DPO rewrite step $G_{L} \Rightarrow{ }_{\mathrm{DPO}}^{\rho, m} G_{R}$.
Injective I ensures uniqueness of pushout complements in Graph, but:

- not in all categories; and
- we lose the ability to duplicate.

Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

 A DPO rewrite rule ρ is a span $L \stackrel{\iota}{\leftarrow} K \xrightarrow{r} R$. A diagram
defines a DPO rewrite step $G_{L} \Rightarrow{ }_{\text {DPO }}^{\rho, m} G_{R}$.

Injective l ensures uniqueness of pushout complements in Graph, but:

- not in all categories; and
- we lose the ability to duplicate.

Alternative approaches:

- Single Pushout (SPO): partial morphisms, deletes dangling edges
- Sesqui Pushout (SqPO): final pullback complements, allows duplication
- AGREE: uses partial map classifiers, allows more control over duplication

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.
Questions:

1. If

$$
L^{\prime}=a \lll b
$$

how can we describe those G for which there exists an $\alpha: G \rightarrow L^{\prime}$?

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.
Questions:

1. If

$$
L^{\prime}=a \varlimsup_{<} b
$$

how can we describe those G for which there exists an $\alpha: G \rightarrow L^{\prime}$? Bipartite or 2-colorable, where α is a proof (assigns node colors).

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.
Questions:

1. If

$$
L^{\prime}=a \varlimsup_{<} b
$$

how can we describe those G for which there exists an $\alpha: G \rightarrow L^{\prime}$? Bipartite or 2-colorable, where α is a proof (assigns node colors).
2. If

$$
L^{\prime}=G \times \sqrt{G} ?
$$

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.
Questions:

1. If

$$
L^{\prime}=a \varlimsup_{<} b
$$

how can we describe those G for which there exists an $\alpha: G \rightarrow L^{\prime}$? Bipartite or 2-colorable, where α is a proof (assigns node colors).
2. If

$$
L^{\prime}=G x \bigvee ?
$$

Any graph, where an α assigns one of 2 edge "colors" to each edge.

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.
Questions:

1. If

$$
L^{\prime}=a \Gamma_{<} b
$$

how can we describe those G for which there exists an $\alpha: G \rightarrow L^{\prime}$?
Bipartite or 2-colorable, where α is a proof (assigns node colors).
2. If

$$
L^{\prime}=G \times \Im ?
$$

Any graph, where an α assigns one of 2 edge "colors" to each edge.
So we can now think of L^{\prime} as a type graph, and α a typing. We will call α an adherence.

A Different Strategy: Dualizing ToyPO

\Longrightarrow Instead of a match $m: L \rightarrow G$, we will look for an $\alpha: G \rightarrow L^{\prime}$.
Questions:

1. If

$$
L^{\prime}=a \Gamma_{<} b
$$

how can we describe those G for which there exists an $\alpha: G \rightarrow L^{\prime}$?
Bipartite or 2-colorable, where α is a proof (assigns node colors).
2. If

$$
L^{\prime}=G \times \preceq \quad ?
$$

Any graph, where an α assigns one of 2 edge "colors" to each edge.
So we can now think of L^{\prime} as a type graph, and α a typing.
We will call α an adherence.

Definition (ToyPB Rule)

A ToyPB rule is a morphism $\rho: L^{\prime} \leftarrow R^{\prime} . L^{\prime}$ and R^{\prime} are called type graphs.

Examples of Expected Behavior

Examples of Expected Behavior

Example

(a) \rightarrow (b) $\stackrel{\rho}{\leftarrow}$ (a) \rightarrow (b)

Examples of Expected Behavior

Example

Examples of Expected Behavior

Example

Example

$G(a b){ }^{\tau}$ (a) \longrightarrow (b)

Examples of Expected Behavior

Example

(a) \leftrightarrows (b) $\stackrel{\rho}{\leftarrow}$ (a) \rightarrow (b)

Example

Examples of Expected Behavior

Example

(a) \leftrightarrows (b) $\stackrel{\rho}{\leftarrow}$ (a) \rightarrow (b)

Example

Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan $G \xrightarrow{\alpha} L^{\prime} \stackrel{\rho}{\leftarrow} R^{\prime}$

Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan $G \xrightarrow{\alpha} L^{\prime} \stackrel{\rho}{\leftarrow}^{\leftarrow} R^{\prime}$ is a span $\sigma=G \stackrel{i_{G}}{\leftarrow} H \xrightarrow{i_{R}} R$

$\leftarrow i_{G}-H$
1
$L^{\prime} \leftarrow \rho-R^{\prime}$

Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan $G \xrightarrow{\alpha} L^{\prime} \stackrel{\rho}{\leftarrow} R^{\prime}$ is a
span $\sigma=G \stackrel{i^{\epsilon}}{\leftarrow} H \xrightarrow{i_{R}} R$ such that

1. σ is a candidate solution: $\alpha \circ i_{G}=\rho \circ i_{R}$;

$$
\begin{aligned}
& G \leftarrow i_{G}-H \\
& 1 \\
& \alpha=i_{R}^{\prime}=i_{R} \\
& \downarrow \\
& L^{\prime} \leftarrow \rho-R^{\prime}
\end{aligned}
$$

Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan $G \xrightarrow{\alpha} L^{\prime} \stackrel{\rho}{\leftarrow} R^{\prime}$ is a span $\sigma=G \stackrel{i_{6}}{\leftarrow} H \xrightarrow{i} R$ such that

1. σ is a candidate solution: $\alpha \circ i_{G}=\rho \circ i_{R}$;
2. σ is the minimal solution: for any span
$G \stackrel{i_{G}{ }^{\prime}}{\leftarrow} H^{\prime} \xrightarrow{i_{R}^{\prime}} R^{\prime}$ that satisfies
$\alpha \circ i_{G}{ }^{\prime}=\rho \circ i_{R}{ }^{\prime}$, there exists a unique
morphism $x: H^{\prime} \rightarrow H$ such that $i_{G}{ }^{\prime}=i_{G} \circ x$ and $i_{R}{ }^{\prime}=i_{R} \circ x$.

Pullbacks

The dual of a pushout is a pullback.
Pullbacks capture the expected behavior.

Definition (Pullback)

The pullback of a cospan $G \xrightarrow{\alpha} L^{\prime} \stackrel{\rho}{\leftarrow} R^{\prime}$ is a span $\sigma=G \stackrel{i_{G}}{\leftarrow} H \xrightarrow{i_{R}} R$ such that

1. σ is a candidate solution: $\alpha \circ i_{G}=\rho \circ i_{R}$;
2. σ is the minimal solution: for any span

$$
\begin{aligned}
& G \stackrel{i_{G}^{\prime}}{\leftarrow} H^{\prime} \xrightarrow{i_{R}^{\prime}} R^{\prime} \text { that satisfies } \\
& \alpha \circ i_{G}{ }^{\prime}=\rho \circ i_{R}^{\prime} \text {, there exists a unique }
\end{aligned}
$$

$$
\text { morphism } x: H^{\prime} \rightarrow H \text { such that }
$$

 $i_{G}{ }^{\prime}=i_{G} \circ x$ and $i_{R}{ }^{\prime}=i_{R} \circ x$.

Think of a pullback as a fibered product:

$$
H=\left\{(x, y) \in G \times R^{\prime} \mid \alpha(x)=\rho(y)\right\}
$$

ToyPB

Definition (ToyPB Rule)

A ToyPB rule is a morphism $\rho: L^{\prime} \leftarrow R^{\prime} . L^{\prime}$ and R^{\prime} are called type graphs.

Definition (Adherence Morphism)

An adherence for a ToyPB rule $\rho: L^{\prime} \leftarrow R^{\prime}$ is a morphism $\alpha: G \rightarrow L^{\prime}$.

Definition (ToyPB Rewrite Step)

A ToyPB rule $\rho: L^{\prime} \leftarrow R^{\prime}$ and adherence morphism $\alpha: G \rightarrow L^{\prime}$ induce a ToyPB rewrite step $G \Rightarrow{ }_{\text {ToyPB }}^{\rho, \alpha} H$ if there exists a pullback of the form

G	$\leftarrow i_{G}-H$	
1		${ }^{\prime}$
α	PB	i_{R}
\downarrow		\downarrow
L^{\prime}	$\leftarrow \rho-$	R^{\prime}

Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

Combining ToyPB with ToyPO is less immediate because they work on different layers.

We need to:

1. make matches and adherences play nice; and
2. find the right way to link a ToyPO step to a ToyPB step.

Computing Preimages with Pullbacks

If one leg of a pullback is injective, pullbacks compute preimages:

PBPO+ Rewrite Rule

Definition (PBPO+ Rule [Corradini et al., 2019, Overbeek et al., 2021]) A PBPO+ rewrite rule ρ is a diagram

$$
\rho=\begin{aligned}
& L \leftarrow 1-\underset{\sim}{r}-r \rightarrow R \\
& t_{L} \\
& \underset{\sim}{r} \\
& L_{k}^{\prime} \\
& L^{\prime} \leftarrow l^{\prime}-K^{\prime} \\
& r
\end{aligned}
$$

L is the lhs pattern of the rule, L^{\prime} its type graph, and t_{L} the embedding of L into L^{\prime}. K is the interface. R is the rhs pattern or replacement for L.

Strong Match

For the step, we will find a match $m: L \hookrightarrow G$ and adherence $\alpha: G \rightarrow L^{\prime}$. We want α to map only the occurrence $m(L)$ into the type graph embedding $t_{L}(L)$.

Strong Match

For the step, we will find a match $m: L \mapsto G$ and adherence $\alpha: G \rightarrow L^{\prime}$. We want α to map only the occurrence $m(L)$ into the type graph embedding $t_{L}(L)$.

In other words, the preimage $\alpha^{-1}\left(t_{L}\right)$ must be L. We call this a strong match.

Strong Match

For the step, we will find a match $m: L \rightarrow G$ and adherence $\alpha: G \rightarrow L^{\prime}$. We want α to map only the occurrence $m(L)$ into the type graph embedding $t_{L}(L)$.

In other words, the preimage $\alpha^{-1}\left(t_{L}\right)$ must be L. We call this a strong match. The right is a commuting square, but not a pullback.

Definition: PBPO+ Rewrite Step

Closing Remarks

We intend to develop a tool for teaching.

Thank you!

