# A PBPO<sup>+</sup> Graph Rewriting Tutorial

Roy Overbeek & Jörg Endrullis 1 August 2022 @ TERMGRAPH

Vrije Universiteit Amsterdam, The Netherlands

| Introduction | ToyPO | Inverting ToyPO | ToyPB | <sub>РВРО</sub> + |  |
|--------------|-------|-----------------|-------|-------------------|--|
| ●O           | OO    | OOO             | 0000  | 00000             |  |
| Introduction |       |                 |       |                   |  |

Last year, we proposed the algebraic graph rewriting formalism PBPO+:

Overbeek, R., Endrullis, J., and Rosset, A. (2021). Graph rewriting and relabeling with PBPO<sup>+</sup>. In *Proc. Conf. on Graph Transformation (ICGT21)*, LNCS

which is a modification of PBPO:

Corradini, A., Duval, D., Echahed, R., Prost, F., and Ribeiro, L. (2017). The pullback-pushout approach to algebraic graph transformation. In Proc. Conf. on Graph Transformation (ICGT17), LNCS

Multiple tutorials exist for DPO and SPO, but none for PBPO<sup>+</sup> or related algebraic formalisms (PBPO, AGREE).

| Introduction | ToyPO | Inverting ToyPO | ToyPB | <sub>РВРО</sub> + |  |
|--------------|-------|-----------------|-------|-------------------|--|
| O●           | OO    | OOO             | 0000  | 00000             |  |
|              |       |                 |       |                   |  |

# Didactic Approach

We will introduce two toy formalisms:

- ToyPushout (ToyPO)
- ToyPullback (ToyPB)

And we will see how they combine into PBPO<sup>+</sup>.

| Introduction | ToyPO | Inverting ToyPO | ToyPB | <sub>РВРО</sub> + |  |
|--------------|-------|-----------------|-------|-------------------|--|
| O            | OO    | OOO             | 0000  | 00000             |  |
|              |       |                 |       |                   |  |

# **Didactic Approach**

We will introduce two toy formalisms:

- ToyPushout (ToyPO)
- ToyPullback (ToyPB)

And we will see how they combine into PBPO+.

#### Definition (Graph)

A graph G = (V, E, s, t) consists of a set of vertices V, a set edges E, a source function  $s : E \to V$  and a target function  $t : E \to V$ .

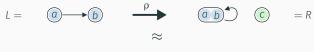
A graph homomorphism  $G \rightarrow G'$  consists of functions

- $\cdot \ \varphi_V: V_G \to V_{G'}$
- $\cdot \ \varphi_{\scriptscriptstyle E}: E_{\scriptscriptstyle G} \to E_{\scriptscriptstyle G'}$

such that

- $\cdot \ {\tt S}_{{\tt G}'} \circ \varphi_{\tt E} \ = \ \varphi_{\tt V} \circ {\tt S}_{\tt G}$
- $\cdot t_{G'} \circ \phi_E = \phi_V \circ t_G$

|               | ToyPO<br>●O | Inverting ToyPO<br>OOO | ТоуРВ<br>0000 | <sub>PBPO</sub> +<br>00000 |  |
|---------------|-------------|------------------------|---------------|----------------------------|--|
| ToyPO Rule an | d Match     |                        |               |                            |  |



"identify nodes a and b, and add a node c"

|               | ToyPO<br>●O | Inverting ToyPO<br>OOO | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|---------------|-------------|------------------------|---------------|----------------------------|--|
| ToyPO Rule an | d Match     |                        |               |                            |  |



"identify nodes *a* and *b*, and add a node *c*"

Definition (ToyPO Rule)

A ToyPO rule is a morphism  $\rho: L \to R$ . L and R are called patterns.

|                      | ToyPO<br>●O | Inverting ToyPO<br>000 | ТоуРВ<br>ОООО | <sub>PBPO</sub> +<br>00000 |  |
|----------------------|-------------|------------------------|---------------|----------------------------|--|
| ToyPO Rule and Match |             |                        |               |                            |  |
|                      |             |                        |               |                            |  |



"identify nodes *a* and *b*, and add a node *c*"

Definition (ToyPO Rule)

A **ToyPO rule** is a morphism  $\rho: L \to R$ . L and R are called **patterns**.

Injective homomorphisms  $m: L \rightarrow G$  model finding occurrences of L in G:

$$L = (a) \longrightarrow (b) \longrightarrow (d) \longrightarrow (a) \longrightarrow (b) (e) \longrightarrow (f) (f) = G$$

|                      | ToyPO<br>●O | Inverting ToyPO<br>000 | ТоуРВ<br>ОООО | <sub>РВРО</sub> +<br>00000 |  |
|----------------------|-------------|------------------------|---------------|----------------------------|--|
| ToyPO Rule and Match |             |                        |               |                            |  |
|                      |             |                        |               |                            |  |



"identify nodes a and b, and add a node c"

Definition (ToyPO Rule)

A **ToyPO rule** is a morphism  $\rho: L \to R$ . L and R are called **patterns**.

Injective homomorphisms  $m: L \rightarrow G$  model finding occurrences of L in G:

$$L = (a) \longrightarrow (b) \longrightarrow (d) \longrightarrow (a) \longrightarrow (b) (e) \longrightarrow (f)^{(n)} = G$$

#### Definition (ToyPO Match)

A **ToyPO match** for a rule  $\rho: L \to R$  in *G* is an injective morphism  $m: L \to G$ . Image m(L) is an **occurrence** of *L* in *G*.

| Тоу |
|-----|
| o   |

ToyPB 0000 <sub>РВРО</sub>+

Conclusion O

# ToyPO Rewrite Step

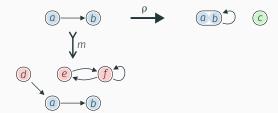


ToyPB 0000 <sub>BPO</sub>+

Conclusion O

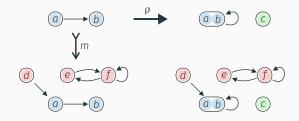
# ToyPO Rewrite Step

ToyPO O●



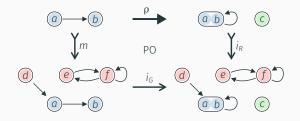
ToyPB 0000 <sub>PBP0</sub>+ 00000 Conclusion O

# **ToyPO Rewrite Step**



ToyPB 0000 <sub>рвро</sub>+ 20000 Conclusion O

# ToyPO Rewrite Step

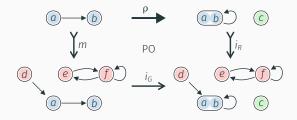


| Toy |
|-----|
| oò  |

ToyPB 0000 <sub>овро</sub>+

Conclusion O

# **ToyPO Rewrite Step**



### Definition (Pushout)

The **pushout** of a **span**  $G \stackrel{m}{\leftarrow} L \stackrel{\rho}{\rightarrow} R$ 

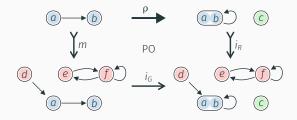
$$\begin{array}{c} L & - \rho \rightarrow R \\ \downarrow \\ m \\ + \\ G \end{array}$$

| Toy |
|-----|
| oò  |

ToyPB 0000 <sub>ВРО</sub>+

Conclusion O

# **ToyPO Rewrite Step**



#### **Definition** (Pushout)

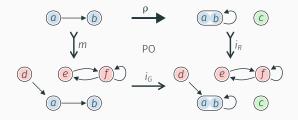
The **pushout** of a **span**  $G \stackrel{m}{\leftarrow} L \stackrel{\rho}{\rightarrow} R$ is a **cospan**  $\sigma = G \stackrel{i_G}{\rightarrow} H \stackrel{i_R}{\leftarrow} R$ 

 $\begin{array}{ccc} L & - \rho \rightarrow & R \\ \stackrel{I}{\underset{w}{\overset{}{\rightarrow}}} & & \stackrel{i}{\underset{w}{\overset{}{\rightarrow}}} \\ G & - i_G \rightarrow & H \end{array}$ 

| Toyl |
|------|
| oò   |

ToyPB 0000 <sub>PBPO</sub>+ 00000 Conclusion O

### **ToyPO Rewrite Step**



#### Definition (Pushout)

The **pushout** of a **span**  $G \stackrel{m}{\leftarrow} L \stackrel{\rho}{\rightarrow} R$ is a **cospan**  $\sigma = G \stackrel{i_G}{\rightarrow} H \stackrel{i_R}{\leftarrow} R$  such that

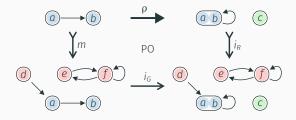
1.  $\sigma$  is a candidate solution:  $i_G \circ m = i_R \circ \rho$ ;

 $\begin{array}{c} L & - \rho \rightarrow R \\ \stackrel{i}{m} & = & \stackrel{i}{i_R} \\ \stackrel{i}{\gamma} & G & -i_G \rightarrow H \end{array}$ 

| Toy |
|-----|
| oò  |

ToyPB 0000 <sub>рвро</sub>+ 20000 Conclusion O

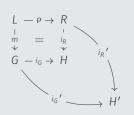
### ToyPO Rewrite Step



#### Definition (Pushout)

The **pushout** of a **span**  $G \stackrel{m}{\leftarrow} L \stackrel{\rho}{\rightarrow} R$ is a **cospan**  $\sigma = G \stackrel{i_G}{\rightarrow} H \stackrel{i_R}{\leftarrow} R$  such that

- 1.  $\sigma$  is a candidate solution:  $i_G \circ m = i_R \circ \rho$ ;
- 2.  $\sigma$  is the minimal solution: for any cospan  $G \stackrel{i'_{G}}{\to} H' \stackrel{i'_{R}}{\leftarrow} R$  that satisfies  $i_{G}' \circ m = i_{R}' \circ \rho$ ,

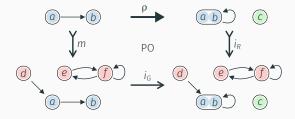


| Toy |
|-----|
| o   |

ToyPB 0000 <sub>ВРО</sub>+

Conclusion O

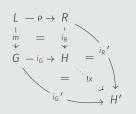
## ToyPO Rewrite Step



#### Definition (Pushout)

The **pushout** of a **span**  $G \stackrel{m}{\leftarrow} L \stackrel{\rho}{\rightarrow} R$ is a **cospan**  $\sigma = G \stackrel{i_G}{\rightarrow} H \stackrel{i_R}{\leftarrow} R$  such that

- 1.  $\sigma$  is a candidate solution:  $i_G \circ m = i_R \circ \rho$ ;
- 2.  $\sigma$  is the minimal solution: for any cospan  $G \xrightarrow{i'_G} H' \xleftarrow{i'_R} R$  that satisfies  $i_G' \circ m = i_R' \circ \rho$ , there exists a **unique**  $x : H \to H'$  with  $i_G' = x \circ i_G$  and  $i_R' = x \circ i_R$ .

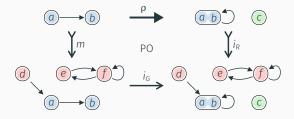


| ToyP |
|------|
| 00   |

ToyPB 0000 <sub>овро</sub>+

Conclusior O

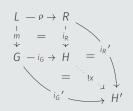
### ToyPO Rewrite Step



#### Definition (Pushout)

The **pushout** of a **span**  $G \stackrel{m}{\leftarrow} L \stackrel{\rho}{\rightarrow} R$ is a **cospan**  $\sigma = G \stackrel{i_G}{\rightarrow} H \stackrel{i_R}{\leftarrow} R$  such that

- 1.  $\sigma$  is a candidate solution:  $i_G \circ m = i_R \circ \rho$ ;
- 2.  $\sigma$  is the minimal solution: for any cospan  $G \xrightarrow{i'_G} H' \xleftarrow{i'_R} R$  that satisfies  $i_G' \circ m = i_R' \circ \rho$ , there exists a **unique**  $x : H \to H'$  with  $i_G' = x \circ i_G$  and  $i_R' = x \circ i_R$ .

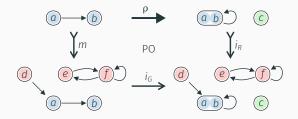


Think of a pushout as a **gluing construction** or a **fibered union**.

| ToyP(<br>O |
|------------|
|            |

ToyPB 0000 <sub>PBPO</sub>+ 00000 Conclusion O

### **ToyPO Rewrite Step**



#### Definition (ToyPO Rewrite Step)

A rule  $\rho: L \to R$  and match  $m: L \to G$  induce a **ToyPO rewrite step**  $G \Rightarrow_{ToyPO}^{\rho,m} H$  if there exists a pushout of the form:

$$\begin{array}{c} L & - \rho \rightarrow R \\ \stackrel{}{\overset{}{_{\scriptstyle Y}}} & PO & \stackrel{}{\overset{}{\underset{\scriptstyle R}}} \\ G & -i_G \rightarrow H \end{array}$$

|              | ToyPO<br>OO  | Inverting ToyPO<br>●OO | ToyPB<br>OOOO | <sub>РВРО</sub> +<br>00000 |  |
|--------------|--------------|------------------------|---------------|----------------------------|--|
| Deleting and | I Duplicatin | g                      |               |                            |  |

|             | ToyPO<br>OO  | Inverting ToyPO<br>●OO | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|--------------|------------------------|---------------|----------------------------|--|
| Deleting an | d Duplicatin | g                      |               |                            |  |

But we would also like to **delete** and **duplicate** elements.

|              | ToyPO<br>OO | Inverting ToyPO<br>●OO | ToyPB<br>OOOO | <sub>РВРО</sub> +<br>00000 |  |
|--------------|-------------|------------------------|---------------|----------------------------|--|
| Deleting and | Duplicatin  | g                      |               |                            |  |

But we would also like to **delete** and **duplicate** elements.

First idea: read a morphism from right to left:

$$L = (a) \longrightarrow (b) (c) = R$$

"duplicate node *ab* (orienting the loop from *a* to *b*), and delete node *c*"

|             | ToyPO<br>OO   | Inverting ToyPO<br>●OO | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|---------------|------------------------|---------------|----------------------------|--|
| Deleting an | nd Duplicatin | g                      |               |                            |  |

But we would also like to **delete** and **duplicate** elements.

First idea: read a morphism from right to left:

$$L = (a) \longrightarrow (b) (c) = R$$

"duplicate node *ab* (orienting the loop from *a* to *b*), and delete node *c*"

Definition (Pushout Complement) A pushout complement for  $G \xleftarrow{m} R \xleftarrow{\rho} L$  $R \xleftarrow{\rho} - L$   $\downarrow_{m}^{l}$  G

|             | ToyPO<br>OO  | Inverting ToyPO<br>●OO | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|--------------|------------------------|---------------|----------------------------|--|
| Deleting an | d Duplicatin | g                      |               |                            |  |

But we would also like to **delete** and **duplicate** elements.

First idea: read a morphism from right to left:

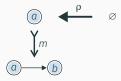
$$L = (a) \longrightarrow (b) (c) = R$$

"duplicate node *ab* (orienting the loop from *a* to *b*), and delete node *c*"

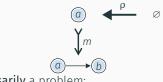
#### Definition (Pushout Complement)

A **pushout complement** for  $G \stackrel{m}{\leftarrow} R \stackrel{\rho}{\leftarrow} L$ is a pair of morphisms  $G \stackrel{l_2}{\leftarrow} H \stackrel{l_1}{\leftarrow} L$  such that we have:

|             | ToyPO<br>OO | Inverting ToyPO<br>O●O | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|-------------|------------------------|---------------|----------------------------|--|
| Two Caveats |             |                        |               |                            |  |

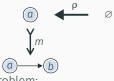


|             | ToyPO<br>OO | Inverting ToyPO<br>O●O | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|-------------|------------------------|---------------|----------------------------|--|
| Two Caveats |             |                        |               |                            |  |



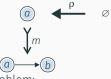
- ⇒ Not **necessarily** a problem:
  - For graphs, it blocks application when edges would be left dangling.

|             | ToyPO<br>OO | Inverting ToyPO<br>O●O | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|-------------|------------------------|---------------|----------------------------|--|
| Two Caveats |             |                        |               |                            |  |

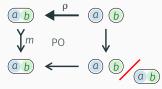


- ⇒ Not **necessarily** a problem:
  - For graphs, it blocks application when edges would be left dangling.
  - But: we might prefer some other policy (highly domain-dependent).

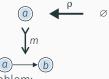
|             | ToyPO<br>OO | Inverting ToyPO<br>O●O | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|-------------|------------------------|---------------|----------------------------|--|
| Two Caveats |             |                        |               |                            |  |



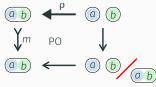
- ⇒ Not **necessarily** a problem:
  - For graphs, it blocks application when edges would be left dangling.
  - But: we might prefer some other policy (highly domain-dependent).
- 2. Pushout complements are not always unique:



|             | ToyPO<br>OO | Inverting ToyPO<br>O●O | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|-------------|------------------------|---------------|----------------------------|--|
| Two Caveats |             |                        |               |                            |  |

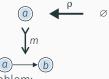


- ⇒ Not **necessarily** a problem:
  - For graphs, it blocks application when edges would be left dangling.
  - But: we might prefer some other policy (highly domain-dependent).
- 2. Pushout complements are not always unique:

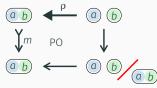


- $\implies$  usually a problem:
  - nondeterminism & changes rule semantics

|             | ToyPO<br>OO | Inverting ToyPO<br>O●O | ToyPB<br>0000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|-------------|------------------------|---------------|----------------------------|--|
| Two Caveats |             |                        |               |                            |  |



- ⇒ Not **necessarily** a problem:
  - For graphs, it blocks application when edges would be left dangling.
  - But: we might prefer some other policy (highly domain-dependent).
- 2. Pushout complements are not always unique:



- $\implies$  usually a problem:
  - nondeterminism & changes rule semantics
  - · difficult question: under what conditions are pushout complements unique?

|  | Inverting ToyPO |  |  |
|--|-----------------|--|--|
|  | 000 -           |  |  |
|  |                 |  |  |

## Frameworks in the Literature

Definition (Double Pushout Rewriting [Ehrig et al., 1973])

A **DPO rewrite rule**  $\rho$  is a span  $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrow} R$ .

|      |              | ToyPO<br>OO            | Inverting ToyPO<br>OO●                                                                                                                                  | ТоуРВ<br>0000  | <sub>PBPO</sub> +<br>00000 |  |
|------|--------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|--|
| Fram | neworks in   | the Literatu           | re                                                                                                                                                      |                |                            |  |
|      | Definition ( | Double Pushc           | out Rewriting [Ehrig                                                                                                                                    | et al., 1973]) |                            |  |
|      | A DPO rewr   | <b>ite rule</b> ρ is a | span $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrow} R.$ A                                                                                      | diagram        |                            |  |
|      |              |                        | $\begin{array}{c} L \leftarrow \iota \longrightarrow K - r - f \\ \stackrel{\vee}{m} PO \qquad \downarrow PO \\ G_{l} \leftarrow G_{K} - f \end{array}$ |                |                            |  |

defines a **DPO rewrite step**  $G_L \Rightarrow_{DPO}^{\rho,m} G_R$ .

|      |                    | ToyPO<br>OO             | Inverting ToyPO<br>OO●                                                                                                                                               | ToyPB<br>0000  | <sub>РВРО</sub> +<br>00000 |  |
|------|--------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------|--|
| Fran | neworks in         | the Literatu            | re                                                                                                                                                                   |                |                            |  |
|      | Definition         | (Double Pusho           | out Rewriting [Ehrig                                                                                                                                                 | et al., 1973]) |                            |  |
|      | A DPO rew          | <b>rite rule</b> ρ is a | span $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrow} R.$ A                                                                                                   | diagram        |                            |  |
|      |                    |                         | $\begin{array}{c} L \leftarrow \iota \longrightarrow K - r - r \\ \stackrel{\vee}{} PO \qquad \downarrow PO \\ \stackrel{\vee}{} G_L \leftarrow G_K - r \end{array}$ |                |                            |  |
|      | defines a <b>D</b> | PO rewrite ste          | $ep \ G_L \Rightarrow_{\rm DPO}^{\rho,m} G_R.$                                                                                                                       |                |                            |  |

Injective *l* ensures uniqueness of pushout complements in **Graph**, but:

- $\cdot\,$  not in all categories; and
- $\cdot$  we lose the ability to duplicate.

| 00 00 <b>00 00 000</b> 0000 1                                                                                                                                                                                                          | 0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Frameworks in the Literature                                                                                                                                                                                                           |   |
| Definition (Double Pushout Rewriting [Ehrig et al., 1973])                                                                                                                                                                             |   |
| A <b>DPO rewrite rule</b> $\rho$ is a span $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrow} R$ . A diagram                                                                                                                      |   |
| $\begin{array}{cccc} L & \leftarrow \iota \longrightarrow K & -r \longrightarrow R \\ \stackrel{\vee}{}_{m} & \text{PO} & \downarrow & \text{PO} & \downarrow \\ G_{L} & \longleftarrow & G_{K} & \longrightarrow & G_{R} \end{array}$ |   |
| defines a <b>DPO rewrite step</b> $G_L \Rightarrow_{\text{DPO}}^{\rho,m} G_R$ .                                                                                                                                                        |   |

Injective *l* ensures uniqueness of pushout complements in Graph, but:

- $\cdot\,$  not in all categories; and
- $\cdot$  we lose the ability to duplicate.

Alternative approaches:

- Single Pushout (SPO): partial morphisms, deletes dangling edges
- Sesqui Pushout (SqPO): final pullback complements, allows duplication
- AGREE: uses partial map classifiers, allows more control over duplication

• ...

|  | ToyPO<br>OO | Inverting ToyPO<br>OOO |  | <sub>РВРО</sub> +<br>00000 |  |
|--|-------------|------------------------|--|----------------------------|--|
|--|-------------|------------------------|--|----------------------------|--|

## A Different Strategy: Dualizing ToyPO

 $\implies$  Instead of a match  $m: L \rightarrow G$ , we will look for an  $\alpha: G \rightarrow L'$ .

| Introduction         ToyPO         Inverting ToyPO         ToyPB         PBPO <sup>+</sup> OO         OO         OOO         OOOO         OOOOO |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------------------------------------------------------------------------|--|

## A Different Strategy: Dualizing ToyPO

 $\implies$  Instead of a match  $m: L \to G$ , we will look for an  $\alpha: G \to L'$ . Questions:

1. *If* 

$$L' = a \longrightarrow b$$

how can we describe those G for which there exists an  $\alpha:G\to L'?$ 

|  | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>●OOO | <sub>РВРО</sub> +<br>00000 |  |
|--|-------------|------------------------|---------------|----------------------------|--|
|--|-------------|------------------------|---------------|----------------------------|--|

 $\implies$  Instead of a match  $m: L \to G$ , we will look for an  $\alpha: G \to L'$ . Questions:

1. *If* 

$$L' = a \longrightarrow b$$

how can we describe those G for which there exists an  $\alpha$  : G  $\rightarrow$  L'? Bipartite or 2-colorable, where  $\alpha$  is a proof (assigns node colors).

|  | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>●OOO | <sub>РВРО</sub> +<br>00000 |  |
|--|-------------|------------------------|---------------|----------------------------|--|
|--|-------------|------------------------|---------------|----------------------------|--|

 $\implies$  Instead of a match  $m: L \to G$ , we will look for an  $\alpha: G \to L'$ . Questions:

1. *If* 

$$L' = a \swarrow b$$

how can we describe those G for which there exists an  $\alpha$  : G  $\rightarrow$  L'? Bipartite or 2-colorable, where  $\alpha$  is a proof (assigns node colors). 2. If

$$L' = \bigcup_{x} x \bigcirc ?$$

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>●000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

 $\implies$  Instead of a match  $m: L \to G$ , we will look for an  $\alpha: G \to L'$ . Questions:

1. *If* 

$$L' = a \swarrow b$$

how can we describe those G for which there exists an  $\alpha$  : G  $\rightarrow$  L'? Bipartite or 2-colorable, where  $\alpha$  is a proof (assigns node colors). 2. If

$$L' = \bigcup_{x} x \bigcirc ?$$

Any graph, where an  $\alpha$  assigns one of 2 edge "colors" to each edge.

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>●000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

 $\implies$  Instead of a match  $m: L \to G$ , we will look for an  $\alpha: G \to L'$ . Questions:

1. *If* 

$$L' = a \swarrow b$$

how can we describe those G for which there exists an  $\alpha$  :  $G \rightarrow L'$ ? Bipartite or 2-colorable, where  $\alpha$  is a proof (assigns node colors). 2. If

$$L' = \bigcup_{x} x \bigcirc ?$$

Any graph, where an  $\alpha$  assigns one of 2 edge "colors" to each edge.

So we can now think of L' as a type graph, and  $\alpha$  a typing. We will call  $\alpha$  an **adherence**.

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>●000 | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

 $\implies$  Instead of a match  $m: L \to G$ , we will look for an  $\alpha: G \to L'$ . Questions:

1. *If* 

$$L' = a \longrightarrow b$$

how can we describe those G for which there exists an  $\alpha$  : G  $\rightarrow$  L'? Bipartite or 2-colorable, where  $\alpha$  is a proof (assigns node colors). 2. If

$$L' = \bigcup_{x} x \bigcirc ?$$

Any graph, where an  $\alpha$  assigns one of 2 edge "colors" to each edge.

So we can now think of L' as a type graph, and  $\alpha$  a typing. We will call  $\alpha$  an **adherence**.

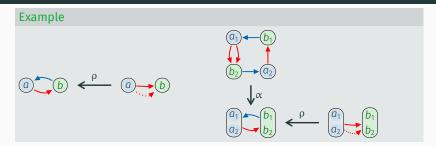
Definition (ToyPB Rule)

A ToyPB rule is a morphism  $\rho: L' \leftarrow R'$ . L' and R' are called type graphs.

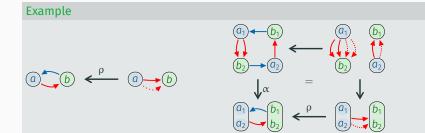
| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>O●OO | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

#### Example

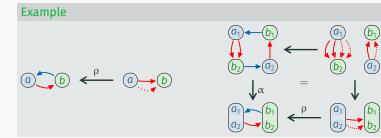
|  | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>O●OO | <sub>РВРО</sub> +<br>00000 |  |
|--|-------------|------------------------|---------------|----------------------------|--|
|--|-------------|------------------------|---------------|----------------------------|--|



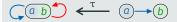
| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>O●OO | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |



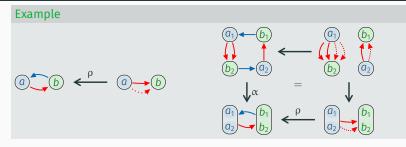
| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>O●OO | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        | 0000          |                            |  |

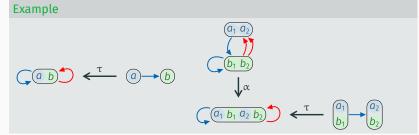


#### Example

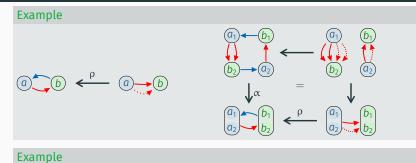


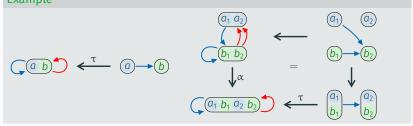
| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>O●OO | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |





| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>O●OO | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |





|           | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>OO●O | <sub>РВРО</sub> +<br>00000 |  |
|-----------|-------------|------------------------|---------------|----------------------------|--|
| Pullbacks |             |                        |               |                            |  |

The **dual** of a pushout is a pullback. Pullbacks capture the expected behavior.

Definition (Pullback)

The **pullback** of a cospan  $G \xrightarrow{\alpha} L' \xleftarrow{\rho} R'$ 

 $\begin{array}{c} G \\ \downarrow \\ \downarrow \\ L' \leftarrow \rho - R' \end{array}$ 

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>⊙O●O | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

The **dual** of a pushout is a pullback. Pullbacks capture the expected behavior.

#### Definition (Pullback)

The **pullback** of a cospan  $G \xrightarrow{\alpha} L' \xleftarrow{\rho} R'$  is a span  $\sigma = G \xleftarrow{i_G} H \xrightarrow{i_R} R$ 

 $\begin{array}{c} G \leftarrow i_{G} - H \\ \downarrow \\ \downarrow \\ L' \leftarrow \rho - R' \end{array}$ 

| ToyPO<br>OO | Inverting ToyPO<br>000 | ToyPB<br>OO●O | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

The **dual** of a pushout is a pullback. Pullbacks capture the expected behavior.

#### Definition (Pullback)

The **pullback** of a cospan  $G \xrightarrow{\alpha} L' \xleftarrow{\rho} R'$  is a span  $\sigma = G \xleftarrow{i_G} H \xrightarrow{i_R} R$  such that

1.  $\sigma$  is a candidate solution:  $\alpha \circ i_G = \rho \circ i_R$ ;

$$\begin{array}{ccc} G \leftarrow i_{G} - H \\ \stackrel{i}{\alpha} &= & i_{R} \\ \stackrel{i}{\psi} & \\ L' \leftarrow \rho - R' \end{array}$$

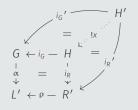
| ToyPO<br>OO | Inverting ToyPO<br>000 | ToyPB<br>OO●O | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

The **dual** of a pushout is a pullback. Pullbacks capture the expected behavior.

#### Definition (Pullback)

The **pullback** of a cospan  $G \xrightarrow{\alpha} L' \xleftarrow{\rho} R'$  is a span  $\sigma = G \xleftarrow{i_G} H \xrightarrow{i_R} R$  such that

- 1.  $\sigma$  is a candidate solution:  $\alpha \circ i_G = \rho \circ i_R$ ;
- 2.  $\sigma$  is the minimal solution: for any span  $G \stackrel{i_{G'}}{\leftarrow} H' \stackrel{i_{R'}}{\rightarrow} R'$  that satisfies  $\alpha \circ i_{G}' = \rho \circ i_{R}'$ , there exists a **unique** morphism  $x : H' \to H$  such that  $i_{G}' = i_{G} \circ x$  and  $i_{R}' = i_{R} \circ x$ .



| ToyPO<br>OO | Inverting ToyPO<br>000 | ToyPB<br>OO●O | <sub>РВРО</sub> +<br>00000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

The **dual** of a pushout is a pullback. Pullbacks capture the expected behavior.

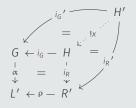
#### Definition (Pullback)

The **pullback** of a cospan  $G \xrightarrow{\alpha} L' \xleftarrow{\rho} R'$  is a span  $\sigma = G \xleftarrow{i_G} H \xrightarrow{i_R} R$  such that

- 1.  $\sigma$  is a candidate solution:  $\alpha \circ i_G = \rho \circ i_R$ ;
- 2.  $\sigma$  is the minimal solution: for any span  $G \stackrel{i_{G'}}{\leftarrow} H' \stackrel{i_{R'}}{\rightarrow} R'$  that satisfies  $\alpha \circ i_{G}' = \rho \circ i_{R}'$ , there exists a **unique** morphism  $x : H' \to H$  such that  $i_{G}' = i_{G} \circ x$  and  $i_{R}' = i_{R} \circ x$ .

Think of a pullback as a **fibered product**:

$$H = \{(x, y) \in G \times R' \mid \alpha(x) = \rho(y)\}$$



|       | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>○○○● | <sub>РВРО</sub> +<br>00000 |  |
|-------|-------------|------------------------|---------------|----------------------------|--|
| ToyPR |             |                        |               |                            |  |

#### Definition (ToyPB Rule)

A ToyPB rule is a morphism  $\rho : L' \leftarrow R'$ . L' and R' are called type graphs.

#### Definition (Adherence Morphism)

An **adherence** for a ToyPB rule  $\rho: L' \leftarrow R'$  is a morphism  $\alpha: G \rightarrow L'$ .

#### Definition (ToyPB Rewrite Step)

A ToyPB rule  $\rho: L' \leftarrow R'$  and adherence morphism  $\alpha: G \to L'$  induce a ToyPB rewrite step  $G \Rightarrow_{ToyPB}^{\rho,\alpha} H$  if there exists a pullback of the form

$$\begin{array}{c} G \leftarrow i_{G} - H \\ \stackrel{i}{\alpha} & PB & \stackrel{i}{\gamma} \\ \downarrow^{L'} \leftarrow \rho - R' \end{array}$$

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>OOOO | PBP0+<br>●0000 |  |
|-------------|------------------------|---------------|----------------|--|
|             |                        |               |                |  |

## Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>OOOO | <sub>РВРО</sub> +<br>●0000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

#### Combining ToyPB and ToyPO

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

$$\begin{array}{cccc} L \leftarrow \iota - K & -r \rightarrow R \\ \stackrel{\searrow}{} & \text{PO} & \stackrel{\cong}{} & \text{PO} & \downarrow \\ \varphi & & & & \\ G \longleftarrow & X \longrightarrow H \end{array}$$

|             | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>0000 | PBPO <sup>+</sup><br>●00000 |  |
|-------------|-------------|------------------------|---------------|-----------------------------|--|
| Combining 1 | ГоуРВ and T | oyPO                   |               |                             |  |

Inverted ToyPO followed by ToyPO is easy to combine (giving DPO):

 $\begin{array}{ccc} L \leftarrow \iota - K - r \rightarrow R \\ \stackrel{\vee}{m} & \text{PO} & \stackrel{\vee}{m'} & \text{PO} & \downarrow \\ \stackrel{\vee}{\sigma} & \longleftarrow & X \longrightarrow H \end{array}$ 

Combining ToyPB with ToyPO is less immediate because they work on different layers.

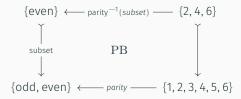
We need to:

- 1. make matches and adherences play nice; and
- 2. find the right way to link a ToyPO step to a ToyPB step.

| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>0000 | <sub>РВРО</sub> +<br>0●000 |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |

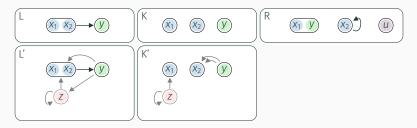
#### Computing Preimages with Pullbacks

If one leg of a pullback is injective, pullbacks compute preimages:



| Introduction         ToyPO         Inverting ToyPO         ToyPB         PBPO           OO         OO         OO         OO         OO         OO |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------------------------------------------------------|--|

#### PBPO<sup>+</sup> Rewrite Rule

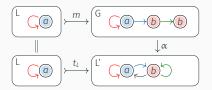


Definition (PBPO<sup>+</sup> Rule [Corradini et al., 2019, Overbeek et al., 2021]) A PBPO<sup>+</sup> rewrite rule  $\rho$  is a diagram

$$\rho = \begin{array}{c} L \leftarrow l - K - r \rightarrow R \\ \stackrel{}{}_{k} PB & \stackrel{}{}_{k} \\ L' \leftarrow l' - K' \end{array}$$

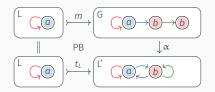
*L* is the **lhs pattern** of the rule, *L'* its **type graph**, and *t<sub>L</sub>* the **embedding** of *L* into *L'*. *K* is the **interface**. *R* is the **rhs pattern** or **replacement for** *L*.

|              | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>0000 | PBP0+<br>000●0 |  |
|--------------|-------------|------------------------|---------------|----------------|--|
| Strong Match |             |                        |               |                |  |



For the step, we will find a match  $m : L \rightarrow G$  and adherence  $\alpha : G \rightarrow L'$ . We want  $\alpha$  to map **only** the occurrence m(L) into the type graph embedding  $t_L(L)$ .

|              | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>0000 | PBP0+<br>00000 |  |
|--------------|-------------|------------------------|---------------|----------------|--|
| Strong Match | 1           |                        |               |                |  |



For the step, we will find a match  $m : L \rightarrow G$  and adherence  $\alpha : G \rightarrow L'$ . We want  $\alpha$  to map **only** the occurrence m(L) into the type graph embedding  $t_L(L)$ . In other words, the preimage  $\alpha^{-1}(t_L)$  must be L. We call this a **strong match**.

| ToyPO<br>OO | Inverting ToyPO<br>OOO |  |
|-------------|------------------------|--|
|             |                        |  |



-<sub>BPO</sub>+ 000●0 Conclusion O





For the step, we will find a match  $m : L \rightarrow G$  and adherence  $\alpha : G \rightarrow L'$ . We want  $\alpha$  to map **only** the occurrence m(L) into the type graph embedding  $t_L(L)$ . In other words, the preimage  $\alpha^{-1}(t_L)$  must be L. We call this a **strong match**. The right is a commuting square, but not a pullback.

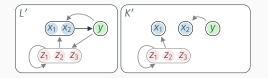
|  |  | рвро+ |  |
|--|--|-------|--|
|  |  | 00000 |  |

$$L \xleftarrow{l} K \xrightarrow{r} R$$

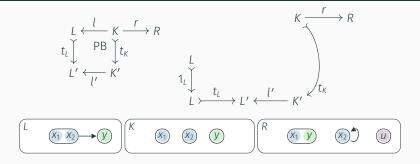
$$t_{L} \xrightarrow{PB} \stackrel{r}{\downarrow} t_{K}$$

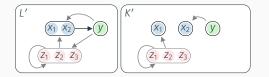
$$L' \xleftarrow{l'} K'$$



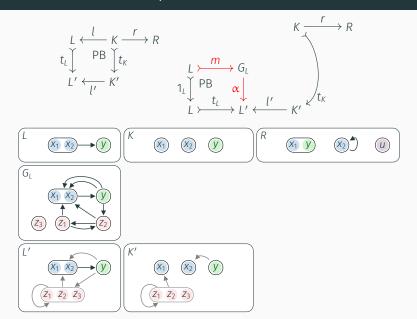


|  | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>0000 | PBP0+<br>0000● |  |
|--|-------------|------------------------|---------------|----------------|--|
|--|-------------|------------------------|---------------|----------------|--|

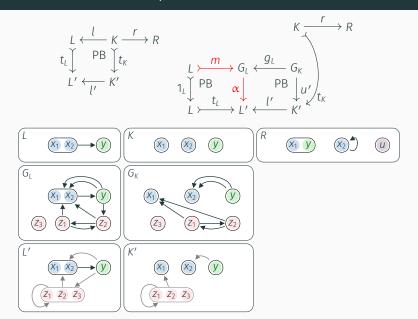




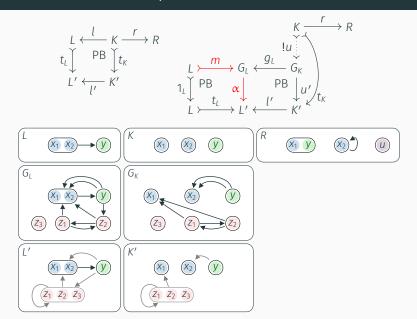
| 00 00 000 0000 0000 0 |  | ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>0000 | PBPO+<br>00000 |  |
|-----------------------|--|-------------|------------------------|---------------|----------------|--|
|-----------------------|--|-------------|------------------------|---------------|----------------|--|



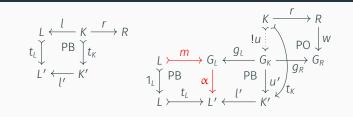
| Introduction ToyPO | Inverting ToyPO | ToyPB | PBP0+ |  |
|--------------------|-----------------|-------|-------|--|
| OO OO              | OOO             | OOOO  | 0000● |  |

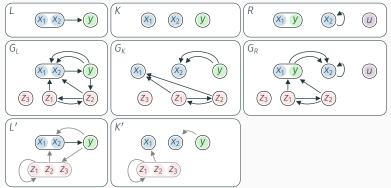


| ToyPO<br>OO | Inverting ToyPO<br>OOO | ToyPB<br>OOOO | <sub>РВРО</sub> +<br>0000● |  |
|-------------|------------------------|---------------|----------------------------|--|
|             |                        |               |                            |  |



|  |  | 8P0+<br>0000 |  |
|--|--|--------------|--|
|--|--|--------------|--|





| ToyPO | Inverting ToyPO | ToyPB | <sub>РВРО</sub> + | Conclusion |
|-------|-----------------|-------|-------------------|------------|
| OO    | 000             | 0000  | 00000             | •          |
|       |                 |       |                   |            |

## Closing Remarks

We intend to develop a tool for teaching.

Thank you!