
Submitted to:
TERMGRAPH 2022

© Kräuter et al.
This work is licensed under the
Creative Commons Attribution License.

Formalization and analysis of BPMN using graph
transformation systems

Tim Kräuter* , Harald König†* , Adrian Rutle* , Yngve Lamo*

*Western Norway University of Applied Sciences, Bergen, Norway
†University of Applied Sciences, FHDW, Hannover, Germany

tkra@hvl.no, harald.koenig@fhdw.de, aru@hvl.no, yla@hvl.no

The BPMN is a widely used standard notation for defining intra- and inter-organizational workflows.
However, the informal description of the BPMN execution semantics leads to different interpreta-
tions of BPMN constructs and difficulties in checking behavioral properties. Other approaches to
formalizing BPMN’s execution semantics only partially cover BPMN. To this end, we propose a for-
malization that, compared to other approaches, covers most of the BPMN constructs. Our approach
is based on a model transformation from BPMN models to graph transformation systems. As a proof
of concept, we have implemented our approach in an open-source web-based tool.

1 Introduction

Business Process Modeling Notation (BPMN) is a widely used standard notation to define intra- and
inter-organizational workflows. However, the informal description of the BPMN execution semantics
leads to different interpretations of BPMN constructs and difficulties in checking behavioral properties
[1, 6]. To this end, we propose a formalization that, compared to other approaches, covers most of the
BPMN constructs.

Our approach is depicted as a BPMN process model in figure 1. It is based on a model transformation
from BPMN process models to graph transformation systems. Thus, our approach constructs a new graph
transformation system, i.e., graph transformation rules and a start graph for each BPMN process model.
This is a significant difference compared to other approaches such as [1, 10], where only the BPMN
process model is parsed, but the rewrite rules are fixed. Generating specific rules for each model leads
to possibly more but simpler transformation rules that can be matched faster. Essentially, complexity
is partly shifted from the transformation rules to their generation. The generated rules are tailored to a
given process model and thus simpler than the general rules in [10].

The remainder of this paper is structured as follows. First, we describe the semantics formalization
using graph transformation systems (section 3) before explaining how this can be utilized for model
checking BPMN-specific and custom properties (section 4). Then, we shortly present the web-based tool
implementing our approach. Finally, we discuss related work regarding BPMN construct coverage in
section 6 and conclude in section 7.

2 Preliminaries

In this paper, we apply graph rewriting theory to formalize the execution semantics of BPMN. Thus,
in this section, we will briefly introduce BPMN and its execution semantics. Please refer to [4] or the
BPMN specification [6] for further information about BPMN. Furthermore, we describe the theoretical
background behind our application of graph rewriting.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1795-0611
https://orcid.org/0000-0001-6304-6311
https://orcid.org/0000-0002-4158-1644
https://orcid.org/0000-0001-9196-1779

2 Formalization and analysis of BPMN using graph transformation systems

B
P

M
N

 c
he

ck
in

g
ap

pr
oa

ch
Read a BPMN

process model.

Generate a
graph

transformation
system for the

process model.

Generate a
state space and

model check.

start

BPMN file

end

State space

Temporal
properties

Model-checking
results

Atomic
propositions

Graph
transformation

system

Figure 1: Overview of the proposed approach

2.1 BPMN

BPMN is a widely used standard notation to define intra- and inter-organizational workflows. Figure 2
depicts the structure of BPMN process models and the corresponding BPMN symbols contained in
clouds.

SequenceFlow

name: String

Process

name: String

FlowNode

name: String

*
1

Activity Gateway Event

*

*fNodes
s

t

out

in
1

Collaboration

name: String

* participants

MessageFlow

name: String
*

mFlows
source

1

1
target

InteractionNode

Figure 2: Simplified excerpt of the BPMN metamodel [6]

A BPMN process model is represented by a Collaboration that has a set of participants and Mes-
sageFlows between InteractionNodes contained by them (see figure 2). Each participant is a Process
containing FlowNodes connected by SequenceFlows. A FlowNode is either an Activity, Gateway or
Event. There exist many types of Activities, Gateways and Events such as start and end events, for ex-
ample, used in figure 1. Activities represent certain tasks to be carried out during a process, while things
may happen (events). Furthermore, gateways represent conditions or split and merge sequence flows [4].

The BPMN execution semantics are described using the concept of tokens [6]. BPMN process models
are executed by triggering one or more of their start events, leading to the creation of a token at each
triggered start event. Tokens are transported between flow nodes by sequence flows (arrows) 1. Activities
can start when there is at least one token located on an incoming sequence flow. The start of an activity

1The visual bpmm-js token simulation available at https://bpmn-io.github.io/bpmn-js-token-simulation/

modeler.html greatly helps to understand BPMN execution semantics.

https://bpmn-io.github.io/bpmn-js-token-simulation/modeler.html
https://bpmn-io.github.io/bpmn-js-token-simulation/modeler.html

Kräuter et al. 3

will move the incoming token to the activity. When an activity finishes it will create one token for
each outgoing sequence flow. Different gateway types exist, for example, for split/merge or XOR/OR
distribution of tokens. Events consume and create tokens similarly to activities but also have additional
semantics depending on their type. For example, message events will create or consume messages.

2.2 Theoretical background

We use typed attributed graphs for the formalization of the BPMN execution semantics. Each state, i.e.,
token distribution during the execution of a BPMN model is represented as an attributed graph typed in
the BPMN execution type graph introduced later in section 3.

Regarding graph transformation, we utilize the single-pushout (SPO) approach with negative appli-
cation conditions (NAC) [3]. In addition, we utilize nested rules with quantification to make parts of a
rule applied repeatedly or optionally [7, 8]. SPO is sufficient to formalize the BPMN execution semantics
and the automatic removal of dangling edges is not a problem. Moreover, we utilize NACs to implement
some more intricate parts in the BPMN execution semantics such as the termination of processes. In
SPO rewriting, a graph transformation rule is defined as a partial graph morphism L → R, while in our
case L and R are typed attributed graphs.

3 BPMN semantics formalization

Since our approach is based on a model transformation from BPMN to graph transformation systems, we
generate a start graph and graph transformation rules for a given BPMN process model. The approach
supports the BPMN constructs depicted in figure 3.

Events (E)

Edges

Gateways

Activities

Boundary Events (BE)

Intermediate Events (IE)

Start Events (SE)

End Events (EE)

Tasks

Sub Process, expanded

Message flowSequence flow

Receive
Task (RT)

Send
TaskActivity

NSE MSE SSE

ITE MICE MITE

LICE LITE SICE SITE

IBE MBE MBE (non-interrupting)

SBE SBE (non-interrupting)

NEE TEE MEE SEE

Parallel
Gateway

Inclusive
Gateway

Exclusive
Gateway

Event based
Gateway

Event Sub Process

RT

(instantiating)

M = Message
S = Signal
I = Intermediate
C = Catch
L = Link
T= Throw

Figure 3: Overview of the supported BPMN constructs (structure adapted from [5])

4 Formalization and analysis of BPMN using graph transformation systems

ProcessSnapshot

name: String

Token

elementID: String

<<enumeration>>
ProcessState

Running,
Terminated

1
*

subprocesses

* tokens

/state

1
Message

elementID: String

*
incMessages

Figure 4: BPMN execution type graph

Our formalization of BPMN is token-based, as in the informal description of the BPMN specification
[6]. Thus, to describe processes holding tokens during execution, we use the type graph shown in figure 4.
The type graph is depicted using a UML class diagram-like syntax.

We use ProcessSnapshot to denote a running BPMN process with a specific token distribution which
describes one state in the history of process states during the execution. Every ProcessSnapshot has a
set of tokens, incoming messages, and subprocesses. A ProcessSnapshot has the state Terminated if
it has no tokens or subprocesses. Otherwise, it has the state Running. A Token has an elementID,
the BPMN activity or sequence flow at which it is located. A Message has an elementID, pointing
to a MessageFlow. To depict graphs conforming to the type graph concisely, we introduce a concrete
syntax in the clouds attached to the elements. It extends the BPMN syntax by adding tokens. Tokens
are represented as colored circles and are drawn at their specified position in a model. Their color will
match the color of the circle representing the process snapshot holding the token, which is located at
the top left of the corresponding BPMN process. The concrete syntax was significantly inspired by the
excellent bpmn-js-token-simulation2. Using this type graph, we can now define how the start graph and
graph-transformation rules for the different BPMN constructs are created.

The generation of the start graph for a BPMN model is straightforward. For each process in the
BPMN model, we generate a process snapshot if the process contains a none start event (NSE). Then, for
each NSE, we add a token to the respective process snapshot. An example of a start graph is shown in
figure 5 using abstract and concrete syntax. Furthermore, we consider allowing the user to define a start
graph similar to how he can define atomic propositions for custom properties (see section 4.2).

P1 ActivityA

start

startToActivityA

1:ProcessSnapshot

name="P1"

1:ProcessState

[Running]

state

1:Token

elementID="start"

tokens 1
...

Figure 5: Example start graph in abstract (left) and concrete syntax (right)

The model transformation generates one or more graph transformation rules for each FlowNode in a
BPMN model. We will now describe the rule generation for NSE’s, tasks, and message events to give an

2https://github.com/bpmn-io/bpmn-js-token-simulation

https://github.com/bpmn-io/bpmn-js-token-simulation

Kräuter et al. 5

overview of how our model transformation works. A table summarizing how the model transformation
works for the main FlowNodes is contained in the artifacts of this paper [9]. Figure 6 depicts an example
graph transformation rule (L → R) for a NSE in abstract syntax. The rule is straightforward and moves a
token from the start event to its outgoing sequence flow. For the rest of the paper, we will depict all rules
in the concrete syntax introduced earlier. The rule from figure 6 depicted in concrete syntax is shown in
figure 7.

1:ProcessSnapshot

name="P1"

1:ProcessState

[Running]

1:Token

elementID="start"

state

tokens

1:ProcessSnapshot

name="P1"

1:ProcessState

[Running]

2:Token

elementID="startToActivityA"

state

tokens

L R

Figure 6: Example graph transformation rule for a NSE (abstract syntax)

P1 ActivityA

start

startToActivityA

P1 ActivityA

start

startToActivityA

1
... 1 ...

Figure 7: Example graph transformation rule for a NSE (concrete syntax)

The rule in figure 8 represents the start of the task, which will move one token from the incoming
sequence flow to the task itself.

P1 ActivityA

start

P1 ActivityA

start

1

1

... ...

Figure 8: Example graph transformation rule to start a task

The left rule in figure 9 realizes a message throw event, and the right rule implements a message
catch event. The message catch event rule consumes a token and a message and creates an outgoing
token. The message throw event rule moves the token through the event and sends a message to a
waiting process snapshot, which must have a token waiting at the corresponding message receive event.
However, sending this message is optional, which is implemented using a nested rule with quantification.
Concretely, we use an optional existential quantifier to send a message only if the receiving process is
ready to receive it [7].

End events consume but do not produce tokens. Thus, process termination can be implemented using
a general rule applicable to all process snapshots. The rule is automatically generated once during the
model transformation to graph transformation systems and is used to terminate processes, sub processes,
and event sub processes. It uses negative-application conditions to forbid tokens and sub processes for a
process snapshot and then changes its state from running to terminated3.

3The terminate rule implemented in Groove is contained in the artifacts of this paper [9].

6 Formalization and analysis of BPMN using graph transformation systems

......

... ...1

1

... ...1

......

... ...1

Optional

......

... ...1

1

Optional

Figure 9: Rules for message intermediate throw events (left) and catch events (right)

4 Model checking BPMN

Model checking a BPMN process model is possible using the generated graph transformation system.
Besides a graph transformation system, a set of temporal properties to be checked and the atomic proposi-
tions used in the properties must be supplied (see figure 1). An atomic proposition can be formalized as a
graph and holds in a given state if it is a subgraph of the graph representing the state. This enables model
checking of temporal properties, for example, LTL properties, using the defined atomic propositions.

Like other work, we differentiate between BPMN-specific properties defined generally for all BPMN
process models and custom properties tailored towards a particular BPMN process model. We do not
consider structural properties since they can be checked using a standard process modeling tool without
implementing execution semantics. We will now give an example of two predefined BPMN-specific
properties and how they can be checked using our approach. Then, we describe how custom properties
can be constructed and checked.

4.1 BPMN-specific properties

Two BPMN-specific behavioral properties, namely, Safeness and Soundness, are defined in [2]. A BPMN
process model is safe if, during its execution, at most one token occurs along the same sequence flow
[2]. Soundness is further decomposed into (i) Option to complete: any running process instance must
eventually complete, (ii) Proper completion: at the moment of completion, each token of the process
instance must be in a different end event, (iii) No dead activities: any activity can be executed in at
least one process instance [2]. As an example, we will now describe how to implement the Safeness and
Option to complete properties.

Safeness is checked using the LTL property defined in (1). The atomic property Unsafe is true if two
tokens of one process snapshot have the same position4. Option to complete is checked using the LTL
property defined in (2). The atomic property AllTerminated is true if there exists no process snapshot in
the state Running, i.e., all process snapshots are Terminated4.

□(¬Unsafe) (1) ♢(□(AllTerminated)) (2)
Both properties can be checked using our implementation [9]. To fully check Soundness, we need to

check Proper Completion and No Dead Activities. The information needed to check these properties is
present in the generated state space.

4.2 Custom properties

To make model checking user-friendly, we envision users defining atomic propositions in the extended
BPMN syntax, i.e., the concrete syntax introduced earlier. Thus, to define an atomic proposition, we

4Groove rules for the atomic properties Unsafe and AllTerminated are contained in the artifacts of this paper [9].

Kräuter et al. 7

let the user attach tokens to a BPMN process model, which we can automatically convert to a graph
representing an atomic proposition.

For example, the token distribution shown in figure 10 defines two running process snapshots with
a token in task A. Differently colored tokens define different process snapshots. A user could use this
property, for example, to check if, eventually, two processes are executing task A simultaneously. Thus,
a user need not be aware of the graph transformation semantics used for execution, which is a significant
advantage compared to other approaches.

A

start end1 1

Figure 10: Token distribution defining an atomic proposition.

5 Implementation

Figure 11 depicts a screenshot of the implemented tool. The tool is open-source, publicly available, and
does not require any installation [9].

Figure 11: Screenshot of the tool

The first two steps of our approach, i.e., reading and transforming BPMN models to graph transfor-
mation systems, are implemented and usable through the web-based tool. Then one can use the graph-
transformation tool Groove5 for state space generation and model checking locally. We are currently

5https://groove.ewi.utwente.nl/about

https://groove.ewi.utwente.nl/about

8 Formalization and analysis of BPMN using graph transformation systems

working on extending our tool such that model-checking can be done without installing Groove locally.
Groove implements SPO with NACs and thus has all the features we need. To evaluate the correctness of
our implementation, we created a comprehensive test suite, which demonstrates correct rule generation
for the implemented BPMN constructs [9].

6 Related work

A BPMN formalization based on in-place graph transformation rules is given in [10]. The formalization
covers a substantial part of the BPMN specification, including complex concepts such as inclusive gate-
way merge and compensation. In addition, graph transformation rules are visual and thus can easily be
matched to the informal description of the execution semantics in the specification [6]. The graph trans-
formation rules were implemented in a prototype using GrGen.NET. Unfortunately, the implementation
is not publicly accessible anymore. Moreover, they do not support model checking since their goal is
only formalization.

The tool BProVe6 is based on formal BPMN semantics given in rewriting logic and implemented in
the Maude system. Using these semantics, BProVe enables the verification of custom LTL properties and
BPMN-specific properties, such as Safeness and Soundness. Furthermore, the tool is accessible online,
not requiring any installation [1].

The verification framework fbpmn uses first-order logic to formalize and check BPMN process mod-
els [5]. This formalization is then realized in the TLA+ formal language and can be model-checked using
TLC. Their framework and related information is open source and freely available online7. Similar to
BProVe, fbpmn allows checking BPMN-specific properties, such as Safeness and Soundness. However,
they do not allow a user to define custom temporal properties.

We looked in detail at these three approaches since they support a significant subset of the BPMN
constructs and have accessible and well-documented tools. Nevertheless, each approach supports a dif-
ferent subset of the BPMN constructs. The coverage of BPMN constructs greatly impacts how useful
each approach is in practice. Table 1 depicts which BPMN constructs are supported by the different
approaches compared to our approach.

Van Gorp et al. [10] cover a large part of the BPMN semantics. However, they do not support Event-
based gateways and event subprocesses, while their support for boundary events is minimal. Especially,
Event-based gateways are often used in practice. Corradini et al. [1] support message and terminate
events. In addition to [1], Houhou et al. [5] support timer and the use of message and timer events as
both interrupting and non-interrupting boundary events. However, many other event types exist and are
used in practice.

Referring to table 1, we conclude that our formalization is comprehensive but still lacks support for
some of the more advanced event types. An implementation of the missing event types is feasible, as
shown in [10].

7 Conclusion & future work

The approach presented in this paper utilizes a model transformation from BPMN models to graph trans-
formation systems. For each BPMN model, we automatically generate a start graph and a set of graph

6http://pros.unicam.it/bprove/
7https://github.com/pascalpoizat/fbpmn

http://pros.unicam.it/bprove/
https://github.com/pascalpoizat/fbpmn

Kräuter et al. 9

Table 1: Constructs supported by different BPMN formalizations (overview based on [10]).

Feature Van Gorp Corradini Houhou This
et al. [10] et al. [1] et al. [5] paper

Instantiation and termination
Start event instantiation X X X X
Exclusive event-based gateway instantiation X X
Parallel event-based gateway instantiation
Receive task instantiation X
Normal process completion X X X X
Activities
Activity X X X X
Subprocess X X X X
Ad-hoc subprocesses
Loop activity X
Multiple instance activity
Gateways
Parallel gateway X X X X
Exclusive gateway X X X X
Inclusive gateway (split) X X X X
Inclusive gateway (merge) X X X
Event-based gateway X1 X X
Complex gateway
Events
None Events X X X X
Message events X X X X
Timer Events X
Escalation Events
Error Events (catch) X
Error Events (throw) X
Cancel Events X
Compensation Events X
Conditional Events
Link Events X X
Signal Events X X
Multiple Events
Terminate Events X X X X
Boundary Events X2 X3 X
Event subprocess X
1 Does not support receive tasks after event-based gateways.
2 Only supports interrupting boundary events on tasks.
3 Only supports message and timer events.

10 Formalization and analysis of BPMN using graph transformation systems

transformation rules. In this way, the graph transformation rules get simpler while the complexity is
shifted to the model transformation from BPMN to graph transformation systems. Our resulting BPMN
formalization is comprehensive and supports model checking. In addition, we provide a prototype im-
plementation in a web-based tool to make our ideas easily accessible to other researchers and potentially
practitioners in the future.

We aim to improve our formalization and resulting tool in multiple ways in the future. First, we
intend to extend our formalization to support even more BPMN constructs, for example, error, cancel,
and compensation events. Second, we plan to evaluate our approach on models from open repositories
such as the “BPM Academic Initiative Model Collection” [11] and “Camunda BPMN for Research”8.
Third, we want to extend the features of our tool; one should be able to define atomic propositions for
model checking in the tool directly, as described in section 4. Furthermore, counterexamples found
during model checking should be visualized directly in the tool, like the implementation in [5], such that
users need not understand the underlying implementation in Groove.

References

[1] Flavio Corradini, Fabrizio Fornari, Andrea Polini, Barbara Re, Francesco Tiezzi & Andrea Vandin (2021): A
Formal Approach for the Analysis of BPMN Collaboration Models. Journal of Systems and Software 180, p.
111007, doi:10.1016/j.jss.2021.111007.

[2] Flavio Corradini, Chiara Muzi, Barbara Re & Francesco Tiezzi (2018): A Classification of BPMN Collabo-
rations Based on Safeness and Soundness Notions. Electronic Proceedings in Theoretical Computer Science
276, pp. 37–52, doi:10.4204/EPTCS.276.5.

[3] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner & A. Corradini (1997): ALGE-
BRAIC APPROACHES TO GRAPH TRANSFORMATION – PART II: SINGLE PUSHOUT APPROACH
AND COMPARISON WITH DOUBLE PUSHOUT APPROACH, pp. 247–312. WORLD SCIENTIFIC,
doi:10.1142/9789812384720 0004.

[4] Jakob Freund & Bernd Rücker (2019): Real-Life BPMN: Using BPMN and DMN to Analyze, Improve, and
Automate Processes in Your Company, 4th edition edition. Camunda, Berlin.

[5] Sara Houhou, Souheib Baarir, Pascal Poizat, Philippe Quéinnec & Laı̈d Kahloul (2022): A First-Order Logic
Verification Framework for Communication-Parametric and Time-Aware BPMN Collaborations. Information
Systems 104, p. 101765, doi:10.1016/j.is.2021.101765.

[6] Object Management Group (2013): Business Process Model and Notation (BPMN), Version 2.0.2.
https://www.omg.org/spec/BPMN/.

[7] Arend Rensink (2006): Nested Quantification in Graph Transformation Rules. In Andrea Corradini, Hartmut
Ehrig, Ugo Montanari, Leila Ribeiro & Grzegorz Rozenberg, editors: Graph Transformations, Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, pp. 1–13, doi:10.1007/11841883 1.

[8] Arend Rensink (2017): How Much Are Your Geraniums? Taking Graph Conditions Beyond First Order. In
Joost-Pieter Katoen, Rom Langerak & Arend Rensink, editors: ModelEd, TestEd, TrustEd, 10500, Springer
International Publishing, Cham, pp. 191–213, doi:10.1007/978-3-319-68270-9 10.

[9] Tim Kräuter: Artifacts - TERMGRAPH-2022. https://github.com/timKraeuter/TERMGRAPH-2022.

[10] Pieter Van Gorp & Remco Dijkman (2013): A Visual Token-Based Formalization of BPMN 2.0
Based on in-Place Transformations. Information and Software Technology 55(2), pp. 365–394,
doi:10.1016/j.infsof.2012.08.014.

[11] Mathias Weske, Gero Decker, Marlon Dumas, Marcello La Rosa, Jan Mendling & Hajo A. Reijers (2020):
Model Collection of the Business Process Management Academic Initiative, doi:10.5281/zenodo.3758705.

8https://github.com/camunda/bpmn-for-research

http://dx.doi.org/10.1016/j.jss.2021.111007
http://dx.doi.org/10.4204/EPTCS.276.5
http://dx.doi.org/10.1142/9789812384720_0004
http://dx.doi.org/10.1016/j.is.2021.101765
http://dx.doi.org/10.1007/11841883_1
http://dx.doi.org/10.1007/978-3-319-68270-9_10
http://dx.doi.org/10.1016/j.infsof.2012.08.014
http://dx.doi.org/10.5281/zenodo.3758705
https://github.com/camunda/bpmn-for-research

	Introduction
	Preliminaries
	BPMN
	Theoretical background

	BPMN semantics formalization
	Model checking BPMN
	BPMN-specific properties
	Custom properties

	Implementation
	Related work
	Conclusion & future work

